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1. Introduction

This will be an introduction to the Enriques classification of (complex)
algebraic surfaces. We consider smooth projective surfaces over an alge-
braically closed field and the classification in question is the classifcation up
to birational equivalence.

For curves, there is a (up to isomorphism) unique smooth projective model
for each birational class and the main numerical invariant is the (geometric)
genus. For surfaces the smooth projective model is not unique, however,
there is a way to classify using a relative minimal model. In this case the
main invariant is the Kodaira dimension κ of a surface, which can assume
one of the four values −∞, 0, 1 and 2. We will see that the surfaces with
κ = 2 are of ‘general type’ and give a more explicit classification for surfaces
with Kodaira dimension κ < 2.

Our main references are:
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2. Preliminaries

We summarize some of the results required in the sequel. In what follows
X will be a smooth projective variety over an algebraically closed field k. In
particular, by a result of Serre [2, III, Corollary 7.7] for every coherent sheaf
(or coherent OX-module) F on X and every i ≥ 0 the cohomology groups
Hi(X,F) are finite dimensional k-vector spaces.

A Weil divisor on X is an element of the free abelian group Div(X) gen-
erated by the closed subvarieties of codimension 1, i.e. has the form

D =
r∑
i=1

niYi,

where ni ∈ Z and Yi ⊆ X is a closed subvariety of codimension 1. Such
a D is efffective, if ni ≥ 0 for all i. Given a function f ∈ k(X)×, we can
associated to f a Weil divisor div(f) (the sum of zeros minus the sum of
poles). A Weil divisor is principal, if it is the divisor of a function and two
Weil divisors D,D′ are linearly equivalent, D ∼ D′, if D −D′ = div(f) for
some f ∈ k(X)×. We write Cl(X) for the quotient Div(X)/ ∼. Since X
is projective, the kernel of the map f 7→ div(f) ist just k× and the above
discussion is summarized by the following exact sequence

0→ k× → k(X)×
div→ Div(X)→ Cl(X)→ 0.

The degree map deg : Div(X) → Z,
∑
niYi 7→

∑
ni descends to a map

deg : Cl(X) → Z, in particular linearly equivalent Weil divisors have the
same degree.
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A Cartier divisor on X is an element of CaDiv(X) = Γ(X,K×X/O
×
X), where

KX is the sheaf of total quotient rings of X. Every Cartier D divisor can
be represented by an open covering {Ui} of X and for each i an element
fi ∈ Γ(Ui,K×X) such that for i, j we have fi · f−1j ∈ Γ(Ui ∩Uj),O×X); set D =
{Ui, fi}. A Cartier divisor D = {Ui, fi} is effective, if all fi ∈ Γ(Ui,OUi

); it is
principal, if it is in the image of the map Γ(X,K×X)→ Γ(X,K×X/O

×
X). Two

Cartierdivisors D,D′ are linearly equivalent, D ∼ D′, if there difference is
principal; set CaCl(X) = CaDiv(X)/ ∼.

There is a map [2, II, Proposition 6.8]

ψ : CaDiv(X)→ Div(X), D = {Ui, fi} 7→
∑

vY (fi)Y,

where the sum runs over all closed subvarieties Y ⊆ X of codimension 1,
and the coefficients come from any index i such that Y ∩ Ui 6= ∅. This
is well-defined and under our assumptions on X an isomorphism. Under
this isomorphism effective Cartier divisors correspond to effective Weil divi-
sors and principal Cartier divisors correspond to principal Weil divisors. In
particular, the map ψ induces an isomorphism

ψ : CaCl(X)
∼=→ Cl(X).

A line bundle (or invertible sheaf) L on X is a locally free sheaf (or
locally free OX-module) of rank 1. The isomorphism classes of line bundles
on X form the Picard group Pic(X); this is an abelian group with respect
to |L| + L′| = |L ⊗OX

L′|. Given a Cartier divisor D = {Ui, fi}, we can
associate to D a subsheaf L(D) ⊆ KX , where L(D) is the sub OX-module
generated by f−1i on Ui. This is a line bundle and as a special case of [2, II,
Proposition 6.13] the map

Θ : CaCl(X)→ Pic(X), |D| 7→ |L(D)|

is an isomorphism of abelian groups; in particular, L(0) = OX .
In summary, we have for every smooth projective variety X isomorphisms

Pic(X)
∼=← CaCl(X)

∼=→ Cl(X).

Line bundles on X give rise to morphisms X → Pnk as follows. Assume f :
X → Pnk is a morphism. Consider the line bundle OPn(1). The homogenous
coordinates X0, . . . , Xn give rise to global sections X0, . . . , Xn of OPn(1))
which generate OPn(1) (i.e. for every point P the images of these sections
generate the stalk OPn(1)P of the sheaf OPn(1) as a module over the local
ring OP ). The line bundle OPn(1) pulls back to a line bundle f ∗(OPn(1)) on
X which is generated by the global sections si = f ∗(Xi), i = 0, . . . , n. It is
a theorem [2, II, Theorem 7.1] that the converse holds: Given a line bundle
L on X and global sections s0, . . . , sn which generate L, there is a unique
morphism f : X → Pnk such that L ∼= f ∗(OPn(1)) and si = f ∗(Xi), i.e.

{ L line bundle on X generated by global
sections s0, . . . , sn ∈ Γ(X,L)

} {f : X → Pnk morphism}
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The above correspondence can be reformulated as follows: Let L be a line

bundle on X and let 0 6= s ∈ Γ(X,L). If U ⊆ X is such that φ : L|U
∼=→ OU ,

then φ(s) ∈ Γ(U,OX). This, applied to an open covering where L is locally
trivial gives rise to an effective Cartier divisor (the divisor of zeros of s)
div(s)0 = {Ui, φi(s)}. If D0 is any divisor on X and L = L(D0) is the
associated line bundle, the divisor div(s)0 is linearly equivalent to D0 and
s 7→ div(s)0 defines a map

η : Γ(X,L) \ {0} → |D0| = {D | D effective divisor, D ∼ D0}.

It can be shown [2, II, Proposition 7.7] that this map is surjective with kernel
isomorphic to k×, i.e. η induces an isomorphism

Γ(X,L) \ {0})/k×
∼=→ |D0|.

The set |D0| (possible empty) is a complete linear system on X. The above
isomorphism shows that if Γ(X,L) ∼= km, the set D0 is isomorphic to Pm−1k .
A linear system on X is a subset d ⊆ |D0| of a complete linear system on
X which under the above isomorphism correspondes to a linear subspace of
the corresponding projective space. Any such d corresponds to a sub vector
space V ⊆ Γ(X,L) (namely V = {s ∈ Γ(X,L) | div(s)0 ∈ d} ∪ {0}); the
dimension of d is the dimension as a projective space, i.e. dim d = dimV −1.
A point P ∈ d is a base point, if P ∈ Supp(D) for all D ∈ d (here Supp(D)
is the union of the prime divisors of D. If d corresponds to a subspace
V ⊆ Γ(X,L), then d is base point free if and only if L is generated by global
sections in V . Thus

{ d linear system on X without base
points; s0, . . . , sn basis of V

} {f : X → Pnk morphism}

For example, let X = Pnk , L = OPn
k
(m) with m ≥ 0 and consider the com-

plete linear system |OPn
k
(m)|. we have: Γ(Pnk ,OPn

k
(m)) ∼= Sm is a k-vector

space of dimension N =
(
m+ n
m

)
which is generated by the homogenous

polynomials of degree m in the variables X0, . . . , Xn. Since these polyno-
mials have no common zeros, the complete linear system |OPn

k
(m)| is base

point free and gives rise to a morphism ν : Pnk → PN−1k ; this is the Veronese
morphism which is a closed embedding whose image ν(Pnk) ⊆ PN−1k is the
Veronese variety.

We will need a particular line bundle: Since for a locally free sheaf F on
X of rank m the exterior power ∧rF is a locally free sheaf on X of rank(
m
r

)
[2, II, Exercise 5.16] the exterior power det(F) = ∧nF defines a line

bundle on X. In particular, since ∆ : X → X ×k X is a closed embedding,
∆(X) ⊆ X ×k X is a closed subset and defines an ideal sheaf J ⊆ OX×X .
The sheaf of Kähler differentials (or cotangent bundle) on X is the pullback
ΩX = Ω1

X = ∆∗(J /J 2); if X is smooth of dimension n, the sheaf ΩX is
a locally free sheaf of rank n [2, Theorem 8.15]. Set Ωp

X = ∧pΩX . Then
ωX = Ωn

X is a line bundle, this is the canonical bundle on X. For example,
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if X = Pnk , then there is an exact sequence of sheaves [2, II, Theorem 8.13]

0→ ΩX → OX(−1)n+1 → OX → 0,

it follows from the formula det(OX(−1)n+1) = det(ΩX) ⊗ det(OX) that
ωX = OX(−n− 1).

If X is a smooth projective variety of dimension n with canonical sheaf
ωX and F is a locally free shreaf, by Serre Duality [2, III, Corollary 7.7]

Hi(X,F) ∼= Hn−i(X,F∨ ⊗ ωX)∨ for all i ≥ 0.

For example, if X = Pnk and F = OX(m), then ωX ∼= OX(−n − 1) and
OX(m)∨ ⊗ OX(−n − 1) ∼= OX(−m − n − 1). It follows from Serre Duality
that H0(X,OX(m)) ∼= Hn(X,OX(−m− n− 1)∨, cp. [2, III, Theorem 5.1].

For a smooth projective variety X the arithmetic and geometric genus are
defined as pa(X) = dimk H1(X,OX) and pg(X) = dimk H0(X,ωX). Both
pa(X) and pg(X) are finite non-negative integers. By [2, II, Theorem 8.18]
the geometric genus is a birational invariant, i.e. if two smooth projective
varieties are birationally equivalent, X ∼ Y , then pg(X) = pg(Y ); in par-
ticular, if two such varieties have different geometric genera, they cannot be
birationally equivalent.

3. Curves

In this section we will use the word ‘curve’ to refer to a smooth projective
curve. For a curve X we have ωX = Ω1

X , thus

pa(X) = dimk H1(X,OX) and pg(X) = dimk H0(X,ωX) = H0(X,Ω1
X).

Lemma 3.1. Let X be a curve. Then pa(X) = pg(X); we will refer to this
nonegative integer as the genus g(X) = pa(X) = pg(X) of the curve X.

• If X is a curve over C, it’s underlying topological space is an orientable
compact 2-dimensional R-manifold. Such a topological space is homeomor-
phic to a sphere with handles, the genus of the curve is the number of
handles.

• There are curves of every genus g ≥ 0: For example, if Q ⊆ P3
k is the

smooth quadric defined by xy = uv, then Pic(Q) ∼= Z⊕ Z. If D is a divisor
on Q, we say D has type (a, b) if |L(D)| = (a, b) ∈ Pic(Q) ∼= Z ⊕ Z. For
every a, b > 0 there is an irreducible smooth curve D ⊆ Q of type (a, b) and
for this curve pa(D) = ab − a − b − 1. In particular, the curve D of type
(g + 1, 2) has genus g(D) = g [2, III, Exercise 5.6(c)].

• We will see that for a smooth proective hypersurface X ⊆ P2
k of degree d

the genus is g(X) = 1
2
(d− 1)(d− 1). In particular, there are curves, which

do not arise as such hypersurfaces.

Proof. By Serre Duality H1(X,OX) ∼= H0(X,O∨X ⊗ωX)∨, where O∨X ⊗ωX ∼=
ωX . Hence the k-vector spaces H1(X,OX) and H0(X,ωX) are dual to each
other and have the same dimension. �
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Let D be a disivor on a curve X and consider the corresponding complete
linear system |D|, which is isomorphic to some projective space. If L(D)
is the line bundle associated to D, let l(D) = dimk H0(X,L(D)). Then the
dimension of |D| is l(D)− 1.

Lemma 3.2. Let D be a divisor on a curve X. If l(D) 6= 0, then deg(D) ≥
0. If l(D) 6= 0 and deg(D) = 0, then D ∼ 0, i.e. L(D) = OX .

Proof. If l(D) 6= 0, then |(D)| 6= ∅ and there is an effective divisor D′ with
D ∼ D′. Since the degree of a divisor depends only on the linear equivalence
class, then deg(D) ≥ 0. If l(D) 6= 0 and deg(D) = 0, then D is linearly
equivalent to an effective divisor of degree 0. The only such divisor is 0. �

Let KX be a canonical divisor on X, i.e. a divisor such that L(KX) = ωX .

Theorem 3.3. (Riemann-Roch for curves) Let X be a curve of genus g, D
any divisor on X, and KX a canonical divisor. Then we have the formula

(#) l(D)− l(KX −D) = deg(D) + 1− g.

Proof. Since L(KX) = ωX , we have L(KX−D) ∼= L(D)∨⊗ωX and it follows
from Serre Duality that H0(X,L(D)∨⊗ωX) is dual to H1(X,L(D), i.e. these
k-vector spaces have the same dimension.

For a coherent sheaf F on a curve X consider the Euler characteristic

χ(F) =
∑
i

(−1)i dimk Hi(X,F) = dimk H0(X,F)− dimk H1(X,F).

Then

l(D)− l(KX −D) = dimk H0(X,L(D)− dimk H1(X,L(D)) = χ(L(D))

and we need to show that χ(L(D)) = deg(D) + 1 − g. If D = 0 is the
zero divisor, then deg(D) = 0, L(0) = OX and since dimk H0(X,OX) = 1
(because X is projective) and dimk H1(X,OX) = g (by definition), the above
formula holds in this case.

For the general case it suffices to show: If D is a divisor and P is a point
on X, then (#) hold for D if and only if (#) holds for D + P (since every
divisor D can be reached from 0 by adding and subtracting a finite number
of points, this proves then theorem).

Consider i : Y = {P} → X as a closed subscheme. Then OY (more
precisely i∗OP ) is the skyscaper sheaf k on X which is supported on Y
and L(−Y ) is the corresponding ideal sheaf [2, II, Proposition 6.18]. From
tensoring the exact sequence

0→ L(−Y )→ OX → OY → 0

with L(D + Y ) one obtains the exact sequence

0→ L(D)→ L(D + Y )→ OY → 0

and since the Euler characteristic χ is additiv on exact sequences the formula

χ(L(D + Y )) = χ(L(D)) + 1.
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Because deg(D+ Y ) = deg(D) + 1, (#) holds for D if and only if (#) holds
for D + P . �

Corollary 3.4. Let X be a curve with genus g and canonical divisor KX .
Then deg(KX) = 2g − 2

Proof. By definition l(KX) = dimk H0(X,L(KX)) = dimk H0(X,ωX) = g
and l(0) = dimk H0(X,OX) = 1. By Riemann-Roch 3.3 (with D = KX)
then g − 1 = deg(KX) + 1− g, i.e. deg(KX) = 2g − 2. �

Examples 3.5. (a) Assume a curve X is rational, i.e. X ∼ P1
k. Then

X ∼= P1
k (since X is smooth, see for example [2, I, Proposition 6.8]), i.e. a

curve X is rational if and only if X ∼= P1
k. The formula for the genus of a

hypersurface in P2
k shows that g(P1

k) = 0, hence rational curves have genus 0.
Assume conversely X is a curve with genus g(X) = 0. Let P and Q be two
distinct points on X and set D = P −Q. By Corollary 3.4 deg(KX) = −2,
thus deg(KX − D) = deg(KX) = −2. It follows from Lemma 3.2 that
l(KX − D) = 0 and from Riemann-Roch 3.3 that l(D) = 1. Using again
Lemma 3.2 we have, since deg(D) = 0, D ∼ 0, i.e. P ∼ Q. By [2, II, 6.10.1]
this implies X is rational. In summary: X ∼ P1

k ⇔ X ∼= P1
k ⇔ g(X) = 0.

(b) A curve X is elliptic, if g(X) = 1. In this case deg(KX) = 0 by Corollary
3.4 and l(KX) = dim H0(X,ωX) = g(X) = 1, hence KX ∼ 0 by Lemma 3.2.

Let X be an elliptic curve and P0 a point of X. Write Pic0(X) for the
kernel of the map deg : Pic(X)→ Z, |L(D)| 7→ deg(D). Consider the map

ψ : X → Pic0(X), P 7→ |L(P − P0)|.
We claim this is a bijection: It suffices to show that given a divisor D of
degree 0 on X, there is a unique point P on X such that D ∼ P −P0. From
Riemann-Roch 3.3, applied to the divisor D + P0, we have

l(D + P0)− l(KX −D − P0) = 1 + 1− 1 = 1.

Because deg(KX) = 0 we have deg(KX − D − P0) = −1 and therefore
l(KX−D−P0) = 0. Hence l(D+P0) = 1 and dim |D+P0| = 0. This means
|D + P0| ∼= P0

k = {?}, i.e. there is a unique effective divisor on X which is
linearly equivalent to D + P0. Since the degree of this divisor is 1, it must
be a single point P , hence D + P0 ∼ P and so D ∼ P − P0.

Assuem for simplicity that char(k) 6= 2, 3. Then every elliptic curve X is
given by an affine Weierstrass equation of the form X : y2 = x3 +ax+b with
a, b ∈ K. Because X is smooth, the discriminant ∆(X) = −16(4a3+27b2) 6=
0. The j-invariant of X is defined as j(X) = −1728 · (4a)3/∆ ∈ k. By [2,
IV, Theorem 4.1] two elliptic curves X and X ′ are isomorphic if and only if
j(X) = j(X ′) and every element of the field k occurs as the j-invariant of
some elliptic curve over k. In particular, the map X 7→ j(X) is a bijection
between the set of isomorphism classes of elliptic curves over k and the
elements of the field k.

(c) A curve X of genus g(X) ≥ 2 is called a curve of general type. There
are some results concerning a classification of curves of genus 2 (see, for
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example, [2, IV, Exercise 2.2]); however, such a classification for general
g ≥ 2 is much more difficult and one cannot give an explicit general answer
(cp. [2, pg. 345-347]).

4. Geometry on surfaces and the Riemann-Roch Theorem

In this section a surface will be a smooth projective surface X over an
algebraically closed field k. A curve on such a surface will be any effective
divisor, in particular, it could be singular, reducible or have multiple com-
ponents. A smooth curve is a curve C =

∑
niZi whose components Zi are

smooth and pairwise disjoint. A curve C is connected, if C 6= 0 and the
union of the components Zi is connected. A point will be a closed point.

We want to consider the internal geometry on such a surface; more pre-
cisely, the intersection theory on X. If C,D are smooth curves on X which
intersect transversally, their intersection C.D will be the #(C ∩D), i.e. the
number of points in C ∩D. We will define a general intersection pairing and
prove the Riemann-Roch theorem for surfaces, which correlates the dimen-
sion of a linear system with certain intersection numbers on the surface.

We will show first:

Theorem 4.1. Let X be a surface. There is a unique intersection pairing

Div(X)×Div(X)→ Z, (C,D) 7→ C.D

with the following properties:

(1) If C and D are smooth curves meeting transversally, then
C.D = #(C ∩D), the number of points of C ∩D,

(2) C.D = D.C,

(3) (C1 + C2).D = C1.D + C2.D,

(4) If C1 ∼ C2, then C1.D = C2.D.

We begin with the question of what a transversal intersection should be:
This is a local question, let P ∈ A2

k be a point and consider the local
ring of A2

k at P , i.e. OA2
k,P

= OP = {f/g | f, g ∈ k[x, y], g(P ) 6= 0}.
Then O×P = {f/g | f(p) 6= 0 6= g(P )}. There is a surjective evalua-
tion map OP → k, f/g 7→ f(P )/g(P ) whose kernel is given by the ideal
IP = {f/g | f, g ∈ k[x, y], g(P ) 6= 0, f(P ) = 0}. If f, g are two distinct (ir-
reducible) polynomials in k[x, y], we have inclusions k[x, y]→ OP → k(x, y)
and we can consider the ideal defined by the polynomials f and g in OP and
the k-vector space OP/(f, g). Set (f.g)P = dimkOP/(f, g).

If f(P ) 6= 0, then f ∈ O×P and (f, g) = OP , i.e. (f.g)P = 0. If
f(P ) = 0 = g(P ), then evaluation defines a surjective map OP/(f, g) → k
and (f.g)P ≥ 1; furthermore, (f.g)P = 1 if and only if (f, g) = IP .

Definition 4.2. Let C,D be two distinct irreducible curves on a surface X,
P ∈ C ∩D and f (resp. g) a local equation of C in OX.P (resp. D in OX,P ).
Then the intersection mutiplicity of C and D at the point P is defined as

(C.D)P = (f.g)P = dimkOX,P/(f, g).
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The curves C and D intersect transverally at P if (C.D)P = 1.

NB. By the Nullstellensatz (f.g)P is a non-negative integer.

• (f.g)P = (g.f)P ,

• (f.g)P = (f.(g + fh))P for all h (since (f, g) = (f, g + fh)),

• (f.(gh))P = (f.g)P+(f.h)P (this follows from the exactness of the sequence

0→ OP/(f, h)→ OP/(f, gh)→ OP/(f, g)→ 0).

Examples 4.3. (a) Let 0 ∈ A2
k be the origin. Then I0 = (x, y) ⊆ k[x, y]

and for the coordinate axes we have locally (x.y)0 = 1, as expected.

(b) Consider locally the curves C = V (y) and D, where D = V (f) for
some irreducible f ∈ k[x, y] and C 6= D. Write f = f(x, 0) + hy, then
(y.f)0 = (y.(f(x, 0)))0. Because C 6= D the polynominal f(x, 0) ∈ k[x] is
not the zero polynomial. Thus f(x, 0) = xn · g, where g ∈ k[x] does not
vanish at 0 and n is the multiplicity of 0 in f(x, 0). Hence we have

(y.f)0 = (y.(xng))0 = n · (y.x)0 + (y.g)0 = n.

We also need some geometric considerations, which follow from Bertini’s
Theorem, see for example [2, II,81.8] and [2, III,7.9.1]. Recall that given a
morphism f : X → Y , a line bundle L on X is very ample, if there is an
immersion i : X → PnY such that L ∼= i∗(OPn

Y
(1)). If Y = Spec(k), this

means that L admits global sections s0, . . . , sn such that the corresponding
morphism X → Pnk is an immersion. A line bundle L on X is ample, if for
every coherent sheaf F there is an integer n0 such that for n ≥ n0 the sheaf
F ⊗ Ln = F ⊗ L⊗n is generated by its global sections. It’s a special case
of a Theorem [2, II, Theorem 7.6] that for a variety X over a field k a line
bundle L is ample if and only if for some m > 0 the tensor power Lm is very
ample with respect to X → Spec(k).

We have the following ‘moving lemma’:

Lemma 4.4. Let X be a surface and D a very ample divisor on X (for
example, the intersection of X with a hyperplane in some projective embed-
ding i : X → Pnk , i.e. D such that L(D) ∼= i∗(OPn

k
(1))). If C1, . . . , Cr are

irreducible curves on X, then almost all curves D′ in the complete linear
system |D| are irreducible, smooth and meet each of the Ci transversally.

Proof. See [2, V, Lemma 1.2]. �

If C is a irreducible smooth curve on a surface X and L(D) is a line bundle
on X, write L(D)⊗OC = L(D)|C for the pullback of this line bundle to C.
Note that on this smooth curve we have an isomorphism Pic(C) ∼= Cl(C)
and therefore a degree map on Pic(C); in particular, deg(L(D) ⊗ OC) is a
well defined integer.

Lemma 4.5. Let C be a irreducible smooth curve on a surface X and let D
be any curve on X which meets C transverally. Then

#(C ∩D) = deg(L(D)⊗OC).
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Proof. Consider D → X as a closed subscheme. From the exact sequence

0→ L(−D)→ OX → OD → 0

we obtain by tensoring with OC the exact sequence

0→ L(−D)⊗OC → OC → OC∩D → 0,

where C ∩D = C ×X D is the scheme-theoretic intersection. From the last
sequence we see that the line bundle L(D) ⊗ OC on C corresponds to the
closed subscheme C ∩D on C and, since C and D intersect transversally

#(C ∩D) = deg(L(D)⊗OC).

�

Proof. (of Theorem 4.1) Fix an ample divisor H on X (since X is a projective
surface it has a ample line bundle L(D) and D is such an ample divisor).
Given any two divisors C and D on X, we can choose, by definition of
ampleness, an integer k > 0 such that the line bundles L(C + kH),L(D +
kH),L(kH) are all generated by global sections. Then choose l > 0 such
that L(lH) is very ample [2, II, Theorem 7.6] and let n = k + l. Then
C + nH, D+nH, nH are all very ample [2, II, Exercise 7.5]. By Lemma
4.4 there are C ′ ∈ |C + nH| irreducible smooth, D′ ∈ |D + nH| irreducible
smooth and transversal to C ′, E ′ ∈ |nH| irreducibel smooth and transversal
to D′, and F ′ ∈ |nH| irreducibel smooth and transversal to C ′ and E ′. Then
C = C+nH−nH ∼ C ′−E ′ and D = D+nH−nH ∼ D′−F ′, i.e. we can
write both C and D up to linear equivalence as a difference of two irreducible
smooth curves with transversal intersections. By properties (1)-(4) then

C.D = (C ′ − E ′).(D′ − F ′) = C ′.D′ − E ′.D′ − C ′.F ′ + E ′.F ′

= #(C ′ ∩D′)−#(E ′ ∩D′)−#(C ′ ∩ F ′) + #(E ′ ∩ F ′)

which shows that if such a pairing exists (i.e. is well-defined), it must be
given by the above formula.

Assume now C,D are very ample divisors on X. By Lemma 4.4 there
are irreducible smooth C ′ ∈ |C|, D′ ∈ |D| which intersect transversally. We
claim that

C.D = C ′.D′ = #(C ′ ∩D′)
is well defined and satisfies (1)-(4). Assume D′′ ∈ |D| is again irreducible
smooth and intersects C ′ transverally. From Lemma 4.5, since D′ ∼ D′′, we
have

#(C ′ ∩D′) = deg(L(D′)⊗OC′) = deg(L(D′′)⊗OC′) = #(C ′ ∩D′′);

and likewise replacing C ′ by a C ′′ we see that

#(C ′ ∩D′) = #(C ′′ ∩D′′),

i.e. C.D is well defined. Using elementary properties of line bundles on a
curve it is easy to see that (1)-(4) hold in this setting.
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To define the pairing for any two divisors C,D set (with the above nota-
tions and choices of C ′, D′, E ′ and F ′)

C.D = #(C ′ ∩D′)−#(E ′ ∩D′)−#(C ′ ∩ F ′) + #(E ′ ∩ F ′).
By the pervious paragraph each of the terms in this formula is well defined
and we need to show that the entire formula is well defined. By construction,
C ∼ C ′−E ′ and D ∼ D′−F ′. Assume we have similarly C ∼ C ′′−E ′′ and
D ∼ D′′ − F ′′. Then C ′ + E ′′ ∼ C ′′ + E ′ and since these diviors are very
ample, we have from the above

C ′.D′ − E ′.D′ = C ′′.D′ − E ′′.D′.
An analogous argument, intersecting D′ + F ′′ ∼ D′′ + F ′ with C ′, shows

C ′.D′ − C ′.F ′ = C ′.D′′ − C ′.F ′′,
i.e. the formula for C.D is well defined and has the claimed properties. �

If C,D are curves without common components, the intersection product
can be computed without ‘moving’ the curves.

Proposition 4.6. Let C,D be curves on a surface X without common irre-
ducible components. Then C.D =

∑
P∈C∩D(C.D)P .

Proof. As in the proof of Lemma 4.5 we have the exact sequence

0→ L(−D)⊗OC → OC → OC∩D → 0,

where OC∩D is a skyscraper sheaf which is supported on the finite set C∩D;
for each P ∈ C ∩D we have (OC∩D)P = OX,P/(f, g). Hence

χ(OC) = dimk H0(X,OC∩D) =
∑

P∈C∩D

(C.D)P

On the other hand, the addivity of the Euler characteristic implies that

χ(OC∩D) = χ(OC)− χ(L(−D)⊗OC),

where the right hand side only depends on the linear equivalence class of the
divisor D; by symmetry this also holds for the divisor C. As in the proof of
Theorem 4.1 we may replace C and D with the differences of two irreducible
two smooth curves with transversal intersection. Since the intersection pair-
ing is additive, we may assume C and D are irreducible smooth curves with
transversal intersection. Then χ(OC) = 1− g(C) and by Riemann-Roch 3.3
for curves we have χ(L(−D)) = deg(L(−D)⊗OC) + 1− g(C). Therefore

χ(OC∩D) = − deg(L(−D)⊗OC) = deg(L(D)⊗OC) = #(C ∩D),

where the last identity results from Lemma 4.5. �

Examples 4.7. (a) If D is any divisor on a surface X, we have its self-
intersection number D2 = D.D. This integer cannot be calculated using
the method of Proposition 4.6, even when D is smooth. For an irreducible
smooth curve C on X the proof of Lemma 4.5 shows that C2 = C.C =
deg(L(C) ⊗ OC). If L(−C) is the line bundle associated to C, there is an
isomorphism L(−C)⊗OC ∼= I/I2, where I is the ideal sheaf of the closed
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subscheme C on X. Thus L(C) ⊗ OC = (I/I2)∨ = NC/X is the normal
sheaf of C on X, and C2 = deg(NC/X).

(b) Let X = P2
k. Then Pic(X) ∼= Z generated by a line H. Since any two

lines are linearly equivalent and any two distinct lines meet in one point, we
have H2 = 1. If C,D ⊆ P2

k are curves of degrees m and n, then C ∼ mH
and D ∼ nH. Hence C.D = mH.nH = mnH2 = mn; this is one proof of
Bezout’s Theorem.

(c) Let X = P1
k × P1

k
∼= Q, where Q ⊆ P3

k is the smooth quadric given
by xy = uv. Then Pic(X) = Z ⊕ Z generated by a line L of type (1, 0)
and a line M of type (0, 1). Then L2 = M2 = 0 and L.M = 1 since two
lines in the same family are skew and two lines in different families meet
in one point. If C and D are divisor on X of type (a, b) and (c, d), then
C.D = (aL+ bM).(cL+ dM) = ad+ bc.

(d) For a surface X we have the canonical sheaf ωX = ∧2Ω1
X = Ω2

X ; a
canonical divisor K = KX is a divisor on X such that L(KX) = ωX . The
self-intersection K2 is a number which only depends on X. For example, if
X = P2

k, then with the notations from (b) above, K = −3H, i.e. K2 = 9.

(e) Let π : X̃ → X be the blow up of a (smooth) surface X at a point
P ∈ X, and let E = π−1(P ) be the exceptional divisor. Then E ∼= P1

k and

E2 = deg(NE/X) = deg(L(E)⊗OE) = deg(OP1
k
(−1)) = −1.

This negative self intersection number means that we cannot find a divisor
D on X, which is linearly equivalent to E but different from E, i.e. we
cannot ‘move’ E in its linear equivalence class.

Proposition 4.8. (Adjunction Formula) Let C be a smooth curve of genus
g on a surface X. if KX is a canonical divisor, then

C.(C +KX) = 2g − 2

Proof. By [2, II, Proposition 8.20] ωC ∼= ωX ⊗ L(C) ⊗ OC . By Corollary
3.4 deg(ωC) = 2g(C) − 2 and by Lemma 4.5 deg(ωX ⊗ L(C) ⊗ OC) =
C.(C +KX). �

Examples 4.9. (a) Let π : X̃ → X be the blow up of a point on a smooth
surface from Example 4.7(e). Then E ∼= P1

k and E2 = −1. The Adjunction
Formula 4.8 implies that E.(E + KX̃) = E2 + E.KX̃ = 2g(E) − 2 = −2,
therefore E.KX̃ = −1.

(b) Let X = P2
k and let C ⊆ X be a smooth projective curve of degree d.

If H ⊆ P2
k is a line which generates Pic(X), then C ∼ dH and KX = −3H,

see Examples 4.7(b) and (d). The Adjunction Formula 4.8 implies so

g(C) = 1 +
C2 + C.KP2

2
= 1 +

d2 − 3d

2
=

1

2
(d− 1)(d− 2).

If D is a divisor on a surface X, the superabundance of D is defined as
s(D) = dimk H1(X,L(D)); by definition s(D) is a non-negative integer.
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Theorem 4.10. (Riemann-Roch for surfaces) Let D be any divisor on a
(smooth projective) surface X. Then

l(D)− s(D) + l(KX −D) =
1

2
D.(D −KX) + χ(OX).

Proof. As before L(KX −D) ∼= L(D)∨ ⊗ ωX and by Serre Duality we have

l(KX −D) = dimk H0(X,L(D)∨ ⊗ ωX) = dimk H2(X,L(D),

i.e. the left hand side of the above equation is χ(L(D)).

Since both sides of this equation only depend on the linear equivalence
class of D we map replace D as in the proof of Theorem 4.1 with the dif-
ference C −E of two irreducible smooth curves. Consider the ideal sheaves
L(−C) and L(−E) of C and E. From the exact sequence of sheaves on X

0→ L(−E)→ OX → OE → 0

we obtain by tensoring with L(C) the exact sequence

0→ L(C − E)→ L(C)→ L(C)⊗OE → 0.

Similarly, tensoring the exact sequence

0→ L(−C)→ OX → OC → 0

with L(C) we have the exact sequence

0→ OX → L(C)→ L(C)⊗OC → 0.

Since the Euler characteristic χ is additive we obtain from these sequences

χ(L(C − E)) = χ(L(C)⊗OC)− χ(L(C)⊗OE) + χ(OX).

By Riemann-Roch 3.3 for curves, together with Lemma 4.5, then

χ(L(C)⊗OC) = C2 + 1− g(C),

χ(L(C)⊗OE) = C.E + 1− g(E),

where we can compute the genera from the Adjunction Formula 4.8

g(C) = 1
2
C.(C +KX) + 1

g(E) = 1
2
E.(E +KX) + 1.

In summary, we have shown that

χ(L(D) = χ(L(C − E)) = 1
2
(C − E)(C −KX) + χ(OX)

= 1
2
D.(D −KX) + χ(OX).

�

If X is a smooth projective curve and D is a divisor with the property
that deg(D) > 2g(X) − 2, then dimk H1(X,L(D)) = 0: By Corollary 3.4
deg(KX) = 2g(X)− 2; hence deg(KX −D) < 0 and by Lemma 3.2 l(KX −
D) = 0. Now Serre Duality implies dimk H1(X,L(D)) = 0.

We want to prove an analogous result for surfaces. For this we need
the following observation (cp. [2, V, Exercise 1.2]): If H is a very ample
divisor on a surface X and C is any curve (i.e. effective divisor) on X, the
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intersection number C.H is the degree of C in the projective embedding
given by H. In particular, it is positive.

Lemma 4.11. Let H be an ample divisor on a surface X. Then there
is an integer n0 such that if D is a divisor on X with D.H > n0, then
H2(X,L(D)) = 0.

Proof. Let m > 0 be an integer such that mH is very ample (cp. [2, II,
Theorem 7.6]). If H2(X,L(D)) 6= 0, by Serre Duality l(KX − D) > 0, and
KX − D is effective. By the remark above (KX − D).mH = m[(KX .H) −
(D.H)] > 0, hence D.H < KX .H. If n0 = KX .H, then D.H > n0 and
therefore l(KX −D) = 0. �

Lemma 4.12. Let H be an ample divisor on a surface X and let D be a
divisor on X such that D.H > 0 and D2 > 0. Then for n >> 0 the divisor
nD is linearly equivalent to an effective divisor.

Proof. Choose n0 as in Lemma 4.11 such that for any divisor D′ with D′.H >
n0 we have l(KX −D′) = 0. Since D.H > 0 by assumption, for n >> 0 then
nD.H > n0 and therefore l(KX − nD) = dimk H2(X,L(nD)) = 0. Since
s(nD) = dimK H1(X,L(nD)) ≥ 0, it follows from Riemann-Roch 4.10 that

l(L(nD)) ≥ 1

2
n2D2 − 1

2
nD.KX + χ(OX).

Since D2 > 0 the right hand side becomes positive for n >> 0, hence for
large enough n the divisor nD is linearly equivalent to an effective divisor
(in fact l(L(nD))→∞ as n→∞). �

Definition 4.13. A divisor D on a surface X is numerically equivalent to
zero, D ≡ 0, if D.E = 0 for all divisors E on X. Two divisors D,E are
numerically equivalent, D ≡ E, if D − E ≡ 0. Let Pic0(X) ⊆ Pic(X)
be the subgroup of all line bundles L(D) such that D ≡ 0. The quotient
NS(X) = Pic(X)/Pic0(X) is the Neron-Severi group of X.

Theorem 4.14. (Hodge Index Theorem) Let H be an ample divisor on a
surface X. If D is a divisor on X such that D 6≡ 0 and D.H = 0, then
D2 < 0.

NB. If H is an ample divisor on a surface X, then H2 > 0 (the pullback of
an ample line bundle on a projective variety to a curve on X has positive
degree). There is a decomposition NS(X)⊗Q ∼= Q{H}⊕H⊥ and the Hodge
Index Theorem says the intersection pairing is negative definite on H⊥, i.e.
for D ∈ H⊥ we have D2 < 0. Equivalently: if ρ(X) = dimQ NS(X)⊗Q (the
Neron-Severi group NS(X) is a finitely generated abelian group), then the
signature (or index) of the intersection pairing on NS(X)⊗Q is (1, ρ(X)−1).

Proof. Assume first D2 > 0. Set H ′ = D + nH. Then for n >> 0 H ′ is
ample (cp. proof of Theorem 4.1) and D.H ′ = D2 > 0. By Lemma 4.12 mD
is linearly equivalent to an effective divisor for all m >> 0. Let k > 0 be
such that kH is very ample. Then mD.kH = mk(D.H) > 0, thus D.H > 0,
which contradicts our assumptions. If D2 = 0, then D 6≡ 0 implies that there
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is a divisor E on X such that D.E > 0. For E ′ = (H2)E− (E.H)H we have
E ′.D = (H2)E.D > 0 and E ′.H = 0, i.e. replacing E by E ′ we may assume
E.H = 0. Set D′ = nD + E. Then D′.H = 0 and (D′)2 = 2nD.E + E2.
Because D.E > 0 there is some n >> 0 such that (D′)2 > 0 and applying
the previous argument to D′ gives again a contradiction. �

Remark 4.15. Assume X is a smooth projective surface over C. Consider
X as a complex projective manifold of complex dimension 2 and let Oan be
the sheaf of holomorphic functions on X. The map e : Oan → O×an, f 7→
exp(2πif) is locally surjective and we have the exact sequence of sheaves

0→ Z→ Oan → O×an → 0.

In the resulting long exact sequence of (singular) cohomology groups we have
H0(X,Oan) = C and H0(X,O×an) = C/Z and the map between these groups
is the obvious surjection. Consider the exact sequence

0→ H1(X,Z)→ H1(X,Oan)→ H1(X,O×an)
c1→ H2(X,Z)

By a Theorem of Serre Pic(X) ∼= H1(X,O×an) and one may identify the image
of c1 with the Neron-Severi group NS(X). In particular, we see that Pic(X)
sits in the exact sequence

0→ H1(X,Oan)/H1(X,Z)→ Pic(X)→ NS(X)→ 0,

where the left hand side is a complex torus and the right hand side is a finitely
generated group. In this setting we may identify C.D = c1(C) ∪ c1(D),
i.e. the intersection product on divisors corresponds to the cup product in
singular cohomology. In this context the Hodge Index Theorem is a classical
result from Kähler geometry: Let X be a complex projective surface and ω
the class of an ample line bundle. Then the cup product is negative definite
on ω⊥ ⊆ H1,1(X,C) ∩ H2(X,R).

5. Monoidal Transformations

We use the convetions from the pervious section: A surface X is a smooth
projective surface, a curve on a surface is an effective divisor, and a point
on a surface is a closed point.

A monoidal transformation on a surface X is the birational morphism
which results from blowing up a single point P on X. We will eventually
show that any birational transformation (i.e. birational morphism) between
two projective surfaces can be factored in a finite sequence of monoidal
operations and their inverses; thus monoidal transformation are central to
the study of surfaces.

Let X be a surface, P ∈ X a point and let π : X̃ → X the monoidal
transformation with center P , i.e. the blow up of X at P . Thus π induces

an isomorphism from X̃ \π−1(P ) onto X \P . The inverse image E = π−1(P )

is the exceptional curve on X̃. We know that E ∼= P1
k, and that the self-

intersection number of E on X̃ is E2 = −1, see Example 4.7(e).
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Proposition 5.1. Let X be a surface and π : X̃ → X the monoidal trans-

formation with center P . Then the two maps π∗ : Pic(X) → Pic(X̃) and

Z→ Pic(X̃), 1 7→ 1 · |L(E)| (or 1 7→ 1 · |E|) induces an isomorphism

(#) Pic(X)× Z
∼=→ Pic(X̃), (D,n) 7→ π∗D + nE.

Let π∗ : Pic(X̃) ∼= Pic(X)⊕Z→ Pic(X), π∗D+ nZ 7→ D be the projection
onto the first factor under the isomorphism (#).

The intersection pairing on X̃ is determined by

(a) C,D ∈ Pic(X)⇒ π∗C.π∗D = C.D,

(b) C ∈ Pic(X)⇒ π∗C.E = 0,

(c) E2 = −1.

(d) C ∈ Pic(X), D ∈ Pic(X̃)⇒ π∗C.D = C.(π∗D).

Proof. For any proper closed subset Z ⊆ X and U = X \ Z there is a
surjective restriction map Cl(X)→ Cl(U),

∑
niYi 7→

∑
ni(Yi∩U); this map

is an isomorphism if codimX(Z) ≥ 2 and for Z irreducible of codimension
1 yields the exact sequence Z → Cl(X) → Cl(U) → 0, where the first map
is 1 7→ 1 · |Z|; for details see [2, II, Proposition 6.5]. Since X and U are
smooth we have isomorphism Cl(X) ∼= Pic(X) and Cl(U) ∼= Pic(U) and the
fact that P has codimension 2 implies that Pic(X) ∼= Pic(X \ P ). On the

other hand, X̃ \ E ∼= X \ P , hence there is an exact sequence

Z→ Pic(X̃)→ Pic(X)→ 0,

where the first map is 1 7→ 1 · |L(E)|. Assume |L(E)| = 0. Then for n > 0

0 = n|L(E)|.n|L(E)| = n2E2 = −n2,

Widerspruch. Hence Z → Pic(X̃) is injective and since π∗ splits this se-
quence we have the isomorphism (#).

For (a) and (b) we may write C and D as in the proof of Theorem 4.1 as
the difference of two irreducible smooth curves C ∼ C ′−E ′ and D ∼ D′−F ′
with all intersections transversal. This uses the Moving Lemma 4.4 which
allows us to also assume that these smooth curves do not meet P . Hence π∗

does not affect the intersection (for an irreducible curve |π∗C| = |π−1(C)|)
which gives (a). Similary, π∗C does not meet E, thus π∗C.E = 0, i.e. we
have (b). The same argument proves (d) (write C as a product of irreducible
smooth curves not containing P ); (c) we have shown in Example 4.7(e). �

Lemma 5.2. Let π : X̃ → X be as above. Then we have in Pic(X̃)

KX̃ = π∗KX + E;

furthermore K2
X̃

= K2
X − 1.

NB. The second formula says that the self-intersection number of a surface

is not a birational invariant. For example, if X̃ is the blow up of a point on
X = P2

k, then K2
X = 9 by Example 4.7(d) and K2

X̃
= 8 by the above formula.
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Proof. From Proposition 5.1 we have an isomorphism

Pic(X)⊕ Z→ Pic(X̃), (D,n) 7→ π∗D + nE.

If X̃ is the monoidal transformation with center P and exceptional curve E,

then X̃ \E ∼= X \P and from this it is easy to see (cp. proof of Proposition
5.1) that KX̃ = π∗KX + nE for some n ∈ Z. We show n = 1. From the

Adjunction Formula 4.8, applied to E ⊆ X̃ and using Proposition 5.1 (b),(c)

−2 = 2g(E)− 2 = E.(E +KX̃) = E.(E + π∗KX + nE) = −1− n;

hence n = 1. For the second formula note that by Proposition 5.1(a),(b),(c)

K2
X̃

= (π∗KX + E).(π∗KX + E) = K2
X + E2 = K2

X − 1.

�

Proposition 5.3. Let π : X̃ → X be a above. Then π∗OX̃ = OX and

Hi(X,OX) ∼= Hi(X̃,OX̃) for all i ≥ 0.

Proof. The natural proof of this result uses spectral sequences and will be
omitted here. For an alternate argument, see [2, V, Proposition 3.4]. �

Corollary 5.4. For a monoidal transformation π : X̃ → X we have pa(X̃) =
pa(X), i.e. the arithmetic genus pa is invariant under monoidal transforma-
tions.

NB. It also follows from Corollary 5.3 that X̃ and X have the same geo-
metric genus pg(X) = dimk H2(X,OX) and the same irregularity q(X) =
dimk H1(X,OX).

Proof. There are various ways to define the arithmetic genus, for example,
if X is irreducibel of dimension r and H0(X,OX) = k (X projective) as

pa(X) =
r−1∑
i=0

(−1)i dimK H
r−i(X,OX);

see [2, III, Exercise 5.3]. The claim follows using this definition from Propo-
sition 5.3 �

Let X be a surface and π : X̃ → X a monoidal transformation with center
P . If C is a curve (=effective divisor) on X such that P /∈ C, then π−1(C) ∼=
C. If p ∈ C, then π−1(C) contains E, and π−1(C \ P ) = π−1(C ∩ (X \ P ))

is a curve minus a point on X̃. The strict transform C̃ of C is the closure

of π−1(C \ P ) in X̃, i.e. C̃ = π−1(C \ P )) ⊆ X̃.

Proposition 5.5. Let X be a surface and π : X̃ → X a monoidal trans-
formation with center P . Assume C is a curve on X which meets P with
multiplicity r ≥ 1 (thus P ∈ C and C is smooth at P ⇔ r = 1). Then

C̃ = π∗C − rZ.

Proof. See [2, V, Proposition 3.6]. �
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Corollary 5.6. With the same hypothesis we have C̃.E = r and

pa(C̃) = pa(C)− 1

2
r(r − 1).

Proof. By Proposition 5.5 C̃ = π∗C − rE and by Proposition 5.1

C̃.E = π∗C.E − r(E.E) = 0− r(−1) = r.

If D is a projective scheme of dimension 1, the arithmetic genus is defined as
pa(D) = 1−χ(OD); if D is an effective divisor on a surface X, then 2pa(D)−
2 = D.(D + KX); see [2, V, Exercise 1.3]. Therefore, using Proposition 5.1
and Lemma 5.2, we have

2pa(C̃)− 2 = C̃.(C̃ +KX̃) = (π∗C − rE).(π∗C − rE + (π∗KX + E))

= 2pa(C)− 2− r(r − 1),

which gives the formula pa(C̃) = pa(C)− 1
2
r(r − 1). �

Proposition 5.7. Let C be an irreducible curve on a surface X. Then there
exists a finite sequence of monoidal transformations with suitable centers

Xn → Xn−1 → · · · → X1 → X0 = X

such that the strict transform Cn of C in Xn is smooth.

Proof. If C is already smooth, set n = 0. Otherwise there is a singular
point P on C with multiplicity r ≥ 2. Let X1 → X be the monoidal
transformation with center P and let C1 be the strict transform of C in
X1. By Corollary 5.6 we have pa(C1) < pa(C). If C1 is smooth, we are
done. Otherwise choose a singular point P1 on C1 and iterate. This gives
a sequence of monoidal transformations · · · → Xn → · · · → X0 = X with
pa(Ci) < pa(Ci−1) for all i. Since the arithmetic genus of any irreducible
curve is non-negative (pa(C) = dimk H1(C,OC); see [2, III, Exercise 5.3])
this process terminates and for some n the strict transform Cn is smooth. �

6. Birational Transformations

We show the following ‘Factorization Theorem’ for (smooth projective sur-
faces): If T : X ′ 99K X is a birational transformation of (smooth projective)
surfaces, then T factors as a finite sequence of monoidal transformations and
their inverses. This implies, using Corollary 5.4, that the arithmetic genus
pa is a birational invariant for (smooth projective) surfaces.

Example 6.1. For any smooth projective surface X we have pa(X) = 1 −
dimk H1(X,OX), see proof of Corollary 5.4. If X = P1

k × P1
k, then X ∼ P2

k

(i.e. X is rational) and therefore pa(X) = pa(P2
k) = 1. Let E be an elliptic

curve and Y = E × P1
k. Assume Y ∼ P2

k. Then pa(Y ) = 1. The projection
p : Y → E induces an injective k-linear map p∗ : H1(E,OE) → H1(Y,OY ).
Since dimk H1(E,OE) = pa(E) = g(E) = 1, we have pa(Y ) < 1 and therefore
Y 6∼ P2

k.
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• Let f : X 99K Y be a birational transformation of projective varieties (of
any dimension) and let ∅ 6= U ⊆ X be an open subset such that f |U =
φ : U → Y is a morphism. If ∅ 6= V ⊆ X is another such open set and
f |V = ψ : V → Y is the corresponding morphism, then φ and ψ agree where
both are defined and glue to a morphism U ∪ V → Y [2, I, Exercise 4.2].
Hence there is a largest open set ∅ 6= U ⊆ X on which f is represented
by a morphism (f is ‘defined’ on U). The fundamental points of f are the

elements of X \ U . For example, if π : X̃ → X is the blow up of a point P
on a (smooth projective) surface X, then π has no fundamental points and
the only fundamental point of π−1 is P .

• Let f : X 99K Y be a birational transformation which is defined on
U ⊆ X and let f |U = φ : U → Y be the corresponding morphism. Write
Γφ = {(u, φ(u) | u ∈ U} ⊆ U × Y for the graph of φ. The closure Γ of
Γφ in X × Y is the graph of f . Let p1 : Γ → X and p2 : Γ → Y be
the projections. If Z ⊆ X is a subset, the total transform of Z (under
f) is f(Z) = p2(p

−1
1 (Z)) ⊆ Y . If f is defined at P ∈ X, then f(P ) =

p2((P, φ(P )) = φ(P ); if P is a fundamental point of f , then f(P ) consists
of more than one element.

We will need the following two results:

Lemma 6.2. Let f : X 99K Y be a birational transformation of projective
varieties with X normal. Then the fundamental points of X form a closed
subset of codimension ≥ 2.

NB. If X is a smooth projective surface and f : X 99K Y is a birational
transformation with Y projective the Lemma states, that the fundamental
points of f are a finite set of closed points.

Proof. [2, V, Lemma 5.1]. �

Theorem 6.3. (Zariski’s Main Theorem) Let f : X 99K Y be a birational
transformation of projective varieties with X normal. If P is a fundamental
point of f , then the total transfom f(P ) is connected of dimension ≥ 1.

NB. If X and Y are smooth projective surfaces, f : X 99K Y is a birational
transformation and P is a fundamental point of f , then Theorem 6.3 implies
that f(P ) contains an irreducible curve D ⊆ Y : If f(P ) has dimension 2,
then f(P ) = Y and since the degree map Pic(Y )→ Z is surjective, there is
an irreducible curve D ⊆ Y of degree 1. If f(P ) has dimension 1, let D be
an irreducible component of f(P ) ⊆ Y .

Proof. [2, V, Theorem 5.2]. �

Theorem 6.4. (Factorization Theorem for Surfaces) Let f : X ′ 99K X be
a birational transformation of (smooth projective) surfaces. Then f can be
factored as a finite sequence of monoidal transformations and their inverses.

Corollary 6.5. For a smooth projective surface Y the following are bi-
rational invariants: geometric genus pg(Y ) = dimk H2(Y,OY ), arithmetic

genus pa(Y ) =
∑1

i=0(−1)i dim Hi(Y,OY ), irregularity q(Y ) = dimk H1(Y,OY ).
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Proof. (of Corollary 6.5) Follows from Theorem 6.4, combined with Propo-
sition 5.3 and Corollary 5.4. �

Lemma 6.6. Let T : X 99K X ′ be a birational transformation of (smooth
projective) surfaces. Then there exists a (smooth projective) surface X ′′,
together with biartional morphisms f : X ′′ → X and g : X ′′ → X such that
T = g ◦ f−1.

Proof. Let H ′ be a very ample divisor on X ′ and let C ′ ∈ |2H ′| be an
irreducible smooth curve which does not pass through the (finitely many)
fundamental points of T−1. Let ∅ 6= U ′ ⊆ X ′ be the open set on which
T−1 is defined and represented by a morphism T−1|U ′ = φ : U ′ → X. Then
C ′ ⊆ U ′; let C = φ(C ′) ⊆ X be the image of C ′ in X. Consider the integer

(#) m(T ) = pa(C)− pa(C ′).

By [2, IV, Exercise 1.8] we have

m(T ) ≥ 0 and m(T ) = 0⇔ C ∼= C ′.

Choose another such curve C ′1 ∈ |2H ′| (i.e. C ′1 an irreducible smooth curve
which does not meet the fundamental points of T−1) and let C1 = φ(C ′1).
Because C ′ ∼ C ′1 there is a rational function f ∈ k(X ′)× such that div(f) =
C ′ − C ′1. Let U be an open set such that φ : U ′ → U is an isomorphism
and view f ∈ k(X ′)× ∼= k(U ′)× as an element of k(X)× ∼= k(U)×. Then
div(f) = C−C1. Since the arithmetic genus of a curve only depends on the
linear equivalence class [2, V, Exercise 3.2] the integer m(T ) in (#) depends
only on T and H ′ but not on the choice of C ′ ∈ |2H ′|.

Let C ′ ∈ |2H ′| be such an irreducible smooth curve which does not meet
the fundamental points of T−1. If m(T ) > 0, then C must be singular (if
C is smooth, then C ′ ∼= C and m(T ) = 0). Let P ∈ C be a singular point,

π : X̃ → X the monoidal transformation with center P , and C̃ the strict
transform of C under π. Because P is singular is a singular point on C

it has multiplicity r ≥ 2 and by Corollary 6.5 pa(C̃) < pa(C). Hence if

T̃ = T ◦ π, we have m(T̃ ) < m(T ). Iteration yields a (smooth projecvtive)
surface X ′′ and a birational morphism f : X ′′ → X which is a finite sequence
of monoidal transformations such that if T ′ = T ◦ f , then m(T ′) = 0.

We show T ′ is a morphism. If this holds, then g = T ′ : X ′′ → X ′

will have the claimed properties. Assume T ′ is not a morphism. Then
it has a fundamental point P ′′ ∈ X ′′. By Zariski’s Main Theorem 6.3
the total transform T ′(P ′′) ⊆ X ′ contains an irreducible curve E ′ ⊆ X ′.
Because H ′ is very ample, H ′.E ′ > 0 (see remark before Lemma 4.11).
Choose an irreducible smooth curve C ′ ∈ |2H ′| such that C ′ and E ′ meet
transversally and C ′ does not meet any fundamental points of T−1. Then
C ′.E ′ = 2H ′.E ′ = 2(H ′.E ′) ≥ 2, i.e. C ′ ∩ E ′ contains at least two distinct
points. Let C be the image of C ′ in X ′′. Then P ′′ is at least a double
point on C, thus C is not smooth and therfore m(T ′) > 0; this contradiction
proves the Lemma. �
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Lemma 6.7. Let f : X ′ 99K X be a birational morphism of (smooth projec-
tive) surfaces and let P ∈ X be a fundamental point of T−1. Then f factors

through the monoidal transformation π : X̃ → X with center P , i.e. the
birational transformation π−1 ◦ f is a morphism.

Proof. (sketch) We show T = f ◦π−1 : X 99K X̃ is a morphism. Assume not.
Then T has a fundamental pointP ′ ∈ X ′. Obviously f(P ′) = P (else T (P ′)
is defined). By Zariski’s Main Theorem 6.3 T (P ′) is connected of dimension

≥ 1, i.e. T (P ′) = E, the exceptional curve on X̃. By Lemma 6.2 T−1 is
defined on all but finitely many points, hence there is a point Q ∈ E such
that P ′ = T−1(Q). A local computation, involving the equations defining

X̃, gives a contradiction. Hence T is a morphism. �

Let f : X ′ → X be a birational morphism of (smooth projective) surfaces
and let n(f) be the number of irreducible curves C ′ ⊆ X ′ such that f(C ′) is
a point. Then n(f) is finite: If f(C ′) = P is a point, then P is a fundamental
point of f−1 and by Lemma 6.2 there is only a finite number of fundamental
points. For each fundamenal point P the inverse image f−1(P ) ⊆ X ′ is
a closed subset which has only a finite number of irreducible components.
Thus n(f) is finite.

Lemma 6.8. Let f : X ′ → X be a birational morphism of (smooth projec-
tive) surfaces. Then f can be factored as a composition of n(f) monoidal
transformations.

Proof. Assume P ∈ X is a fundamental point of f−1. If π : X̃ → X is the

monoidal transformation with center P , f1 = π−1◦f : X → X̃ is a birational
morphism by Lemma 6.7. We claim n(f1) = n(f) − 1: If f1(C

′) is a point,
then f(C ′) is a point. Conversely, if f(C ′) is a point, then either f1(C

′) is a

point or f1(C
′) = E, the exceptional curve on X̃. Since f−11 has only a finite

number of fundamental points, there is a unique irreducible curve E ′ ⊆ X ′

such that f1(E
′) = E and n(f1) = n(f)− 1.

It follows form the above that after m = n(f) sucessive blow ups one
obtains a birational morphism fm : X ′ → Xm with n(fm) = 0. By Zariski’s
Main Theorem 6.3 f−1m has no fundamental points and is therefore an iso-
morphism. �

Proof. (of Theorem 6.4) Let f : X ′ 99K X be a birational transformation. By
Lemma 6.6 there is a smooth projective surface X ′′, together with birational
morphisms g : X ′′ → X ′ and h : X ′′ → X such that h = f ◦ g. By Lemma
6.8 g (resp. h) can be factor as a composition of n(g) (resp. n(h)) monoidal
transformation. This proves the Theorem. �

Let π : X̃ → X be the blow up of a point P on a (smooth projective)
surface, and let E = π−1(P ) be the exceptional curve. Then E ∼= P1 and
E2 = −1. We show that if a curve E on a (smooth projective) surface X has
the properties that E ∼= P1 and E2 = −1, then E is the exceptional curve
of the blow up of a point on a (smooth projective) surface.
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Theorem 6.9. (Castelnuovo’s Contraction Theorem) If E is a curve on a
smooth projective surface X such that E ∼= P1 and E2 = −1, then there
exists a morphism f : X → X0 to a smooth projective surface X0 such that
f(E) = P is a point and f : X → X0 is the blow up of P on X0.

Proof. (Sketch) We first want to find a line bundle L on X which is generated
by global sections (hence induces a morphism f : X → PNk ), is very ample
when restricted to X \E (thus the restriction of f to X \P1 is an immersion)
and has the property that f(E) is a point.

Let H be a very ample divisor on X such that H1(X,L(H)) = 0; for
example, a sufficiently high multiple of a very ample divisor [2, III, Theorem
5.3]. Then H.E = m > 0 and for M = H + mE we have M.E = 0. Set
M = L(H +mE); we will show that the line bundleM defines a morphism
X → PNk with the desired properties.

For all 0 ≤ i ≤ m, tensoring the exact sequence of line bundles 0 →
L(−E)→ OX → OE → 0 with L(H + iE) yields the exact sequence

0→ L(H + (i− 1)E)→ L(H + iE)→ OE ⊗ L(H + iE)→ 0.

Here deg(OE ⊗ L(H + iE)) = #(E ∩ (H + iE)) = m − i by Lemma 4.5
and the given isomorphism E ∼= P1

k maps OE ⊗ L(H + iE) to OP1
k
(m − i).

Consider the long exact sequence in cohomology

0→ H0(X,L(H + (i− 1)E)→ H0(X,L(H + iE))→ H0(P1
k,OP1

k
(m− i))

→ H1(X,L(H + (i− 1)E))→ · · ·
We claim that H1(X,L(H + iE)) = 0 for all 1 ≤ i ≤ m. By Serre Duality
(or more elementary methods)

dimk H1(P1
k,OP1

k
(m− i)) = dimk H0(P1

k,OP1
k
(−2 + i−m))

which is zero for i ≤ m. Hence, if H1(X,L(H + (i − 1)E) = 0, then
H1(X,L(H + iE)) = 0 for 1 ≤ i ≤ m; by our choice of H this is true
for i = 1, hence for i ≤ m. Thus for 1 ≤ i ≤ m there is the exact sequence

0→ H0(X,L(H+(i−1)E))
·t→ H0(X,L(H+iE))→ H0(P1

k,OP1
k
(m−i))→ 0,

where t is an element of L(H) which vanishes on E. If {s0, . . . , sn} is a basis
of H0(X,L(H)), then H + E has sections ts0, . . . , tsn plus the pullbacks of
the m sections of H0(P1

k,OP1
k
(m− 1)). Thus H0(X,L(H +mE)) has a basis

of global sections {tms0, . . . , tmsn, tk−1v(k−1)0 , . . . , tk−1v
(k−1)
k−1 , . . . tv

(1)
0 , tv

(1)
1 , v},

where the v
(r)
0 , . . . , v

(r)
r are the pullbacks of r+ 1 sections of OP1

k
(r) and v is

the pullback of a section of OP1
k
; in particular, all of these sections, except for

the last one v, vanish on E. It follows thatM is generated by global sections
and is very ample outside of E, i.e. M induces a morphism f1 : X → PNk
whose restriction to X \E is an immersion X \E → PNk . Furthermore, since
v is the only section in the basis of H0(X,L(H+kE)), which does not vanish
on E, f1(E) = P1 is a point. Set X1 = f1(X).

Let π : X0 → X be the normalization of X1 [2, II, Exercise 3.8]. Since X
is smooth, it is normal and the universal property of the normalization gives
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a morphism f : X → X0 such that f1 = π ◦ f0. Because E is irreducibel,
f(E) = P is still a point and the restriction of f to X \ E induces an
isomorphism X \ E → X0 \ P , where X0 is a normal variety and smooth
outside of P .

It remains to show that X0 is smooth at P . Since X0 is normal and f is
birational, we have f∗OX ∼= OX0 and one can use the Theorem on Formal

Functions [2, III, Theorem 11.1] to show that ÔX0,P
∼= k[[x, y], which is a

regular local ring. It follows that OX0,P is a regular local ring [2, I, Theorem
5.4A], i.e. P is a smooth point on X0.

To conclude we use Lemma 6.8: By construction the morphism f : X →
X0 is a birational morphism with f(E) = P and n(f) = 1. Hence f : X →
X0 must be the blow up of the point P on X0. �

In the classification of smooth projective surfaces we want to specify within
each birational equivalence class of surfaces, one which is as canonical as pos-
sible. Since one can always blow up a point without changing the birational
equivalence class, there is never a unique smooth projective model (as in
the case of curves). However, there are always relatively minimal models as
follows:

Definition 6.10. A smooth projective surface X is a relatively minimal
model for its function field, if every birational morphism X → X ′ to another
smooth projective surfaces is an isomorphism. If X is the unique relatively
minimal models in its birational equivalence class, then X is a minimal
model.

Theorem 6.11. Every smooth projective surface admits a birational mor-
phism to a relatively minimal model.

Proof. It follows from Lemma 6.8 and Theorem 6.9 that X is a relatively
minimal model if and only if it contains no exceptional curves of the first
kind. Given X, if X is already a relatively minimal model, set f = id :
X → X. If not, X has an exceptional curve E of the first kind and blowing
down E yields a birational morphism X = X0 → X1. Iteration yields a
sequence of blow downs X = X0 → X1 → · · · → Xn, and we need to
show this process terminates. In each step Xi → Xi+1 the contraction of the
exceptional curve decreases the integral rank of the Neron-Severi group by 1,
hence n ≤ RangZ NS(X), which is finite, since NS(X) is a finitely generated
abelian group (cp. [2, V, Exercise 1.7]). �

Remarks 6.12. (a) It is not true that a smooth projective surface contains
only finitely many exceptional curves of the first kind. Generally sucessive
blow ups of points can generate more than the expected exceptional curves
of the first kind. For example, if X is the sucessive blow up of two distinct
points P 6= Q on P2

k, X contains the two exceptional curves of the first kind
which are the preimages of P and Q, but it also contains the strict trans-

form L̃ of the line L through P and Q in P2
k. By Corollary 5.5 g(L̃) = 0,

i.e. L̃ ∼= P1
k, and as in Example 4.7(e) we have L̃2 = −1. It can be shown
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[2, V, Exercise 4.15] that if X is the blow up of 9 general points on P2
k, then

X contains infinitely many exceptional curves of the first kind.

(b) A classical result of Zariski says that except for rational (X ∼ P2
k) and

ruled surfaces (X ∼ P1
k×C, where C is a smooth curve of positive genus) ev-

ery smooth projective surface is birational to a unique minimal models. For
rational and ruled surfaces one can describe the relatively minimal models
explicitely.

7. Classification of Surfaces

In the case of curves every birational equivalence class contains a unique
smooth projective model. The genus of a smooth projective curve C is a
numerical invariant which can assume all non-negative integers g(C) ≥ 0.
We have seen that g(C) = 0 ⇔ C ∼= P1

k, g(C) = 1 ⇔ C is an elliptic
curve and g(C) ≥ 2 ⇔ C is a curve of general type. We reformulate this
classification:

Definition 7.1. Let X be a smooth projective variety, and let KX be a
canonical divisor. The Kodaira dimension of X is defined as the integer

κ(X) = tr . degk(⊕n≥0 H0(X,L(nKX)))− 1.

NB. Let n ≥ 0 and assume l(nKX) = dn 6= 0. Then |nKX | defines a canoni-
cal rational map X 99K Pdn−1k and the Kodaira dimension κ(X) is the largest
dimension of the image of these maps for n ≥ 1 and κ(X) = −1 (or κ(X) =
−∞), if |nKX | = ∅ for all n ≥ 1. In particular, if dimX = d, we have for the
Kodaira dimension κ(X) ∈ {−1, 0, 1, . . . , d}. Equivalenty, the plurigenera of
X are the non-negative integers Pn = Pn(X) = dimk H0(X,L(nKX)), where
n ≥ 0 and κ = κ(X) is the smallest number such that Pn/n

κ is bounded,
and κ(X) = −1 (or −∞), if Pn = 0 for all n ≥ 1. The plurigenera Pn for
n ≥ 0 and the Kodaira dimension κ(X) are birational invariants.

Examples 7.2. (a) Let C be a smooth projective curve. By definition
P1(C) = g(C). If g(C) = 0, then C ∼= P1

k and Pn(C) = Pn(P1
k) for

all n ≥ 0 ⇔ κ(C) = κ(P1
k) = −1, because L(nKP1) = OP1

k
(−2n) and

H0(P1
k,OP1

k
(−2n)) = 0 for n ≥ 1; thus g(C) = 0⇔ κ(C) = −1. If g(C) = 1,

then C = E is an elliptic curve, L(nKE) = OE and Pn(E) = 1 for all n ≥ 1,
i.e. κ(E) = 0. In case g(C) ≥ 2, i.e. for a curve of general type, κ(C) = 1.

(b) If X = C ×D is a product of smooth projective curves and one writes
κ(X) = −∞, if Pn(X) = 0 for all n ≥ 1, we have the formula κ(X) =
κ(C) + κ(D) and with suitable choices of curves C and D we can produce
surfaces X = C ×D of Kodaira dimension κ(X) ∈ {−∞, 0, 1, 2}. Note that
for a product P1

k ×E with E an elliptic curve κ(P1
k ×E) = −∞, but P1

k ×E
is not rational.

.
The classification of surfaces uses the Kodaira dimension, as well as the

geometric genus pg = dimk H2(X,OX), the irregularity q = dimk H1(X,OX),
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and the arithmetic genus pa = pg − q. The following Theorem summarizes
this classification:

Theorem 7.3. (Classification by Kodaira dimension) Let X be a smooth
projective surfaces over an algebraically closed field of characteristic 0.

(a) κ(X) = −∞⇔ X is either rational or ruled.

(b) κ(X) = 0. Then a surface in this class must be one of the following:
(i) a K3-surface, which is defined as a surface with KX = 0 and

q = 0. These have pa = pg = 1,

(ii) an Enriques surface, which has pa = pg = 0 and 2KX = 0,

(iii) a 2-dimensional abelian variety; then pa = −1 and pg = 1,

(iv) a hyperelliptic surface X, which is a surfaced fibered over P1
k by

a pencil of elliptic curves.

(c) κ(X) = 1. Then X is an elliptic surface, i.e. a surface X with a
morphism π : X → C to a curve C such that almost all fibers of π
are smooth elliptic curves.

(d) κ(X) = 2⇔for some n > 0 the complete linear system |nKX | deter-
mines a birational morphism from X onto its image in PNk . These
surfaces are surfaces of general type.

8. Rational Surfaces

We consider rational surfaces, i.e. smooth projective surfaces X which are
birational to P2

k, X ∼ P2
k. First examples of rational surfaces are P2

k, linear
hypersurfaces in P3

k, P1
k×P1

k, or equivalently quadric hypersurfaces in P3
k. If

X ∼ P2
k, we have for the birational invariants q, pg and P2:

q(X) = q(P2
k) = dimk H1(P2

k,OP2
k
) = 0,

pg(X) = pg(P2
k) = dimk H2(X,OP2

k
) = dimk H0(P2

k,OP2
k
(−3)) = 0,

P1(X) = P1(P2
k) = dimk H2(P2

k, ωP2
k
) = dimk H0(P2

k,OP2
k
(−3)) = 0.

P2(X) = P2(P2
k) = dimk H2(P2

k, ω
⊗2
P2
k

) = dimk H0(P2
k,OP2

k
(−6)) = 0.

Since for a smooth projective C ∼ P1
k ⇔ g(C) = dimk H1(C,Oc) = 0, one

might expect that for a smooth projective surface we have the equivalence

X ∼ P2
k ⇔ q = dimk H1(X,OX) = 0 and pg = dimk H2(X,OX) = 0.

This is false.

Example 8.1. Let X ⊆ P3
k be the quintic Fermat hypersurface, i.e. the

(smooth) surface defined by the equation T 5
0 +T 5

1 +T 5
2 +T 5

3 = 0. The cyclic
group G = 〈ρ〉 of order 5 acts on the points of X by (X0 : X1 : X2 : X3) 7→
(X0 : ρX2 : ρ2X2 : ρ3X3) and the (classical) Godeaux surface is the (smooth
projective) surface Y = X/G. One can show that q(Y ) = 0 = pg(Y ) but Y
is not rational: For example, any smooth projective rational variety must
be simply connected; however π(Y ) ∼= G.
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For any rational surface X we have P1(X) = P2(X) = 0 and therefore
κ(X) = −∞. The classification Theorem 7.3(a) states that such a surface
is either rational or ruled. We have the following more precise result:

Theorem 8.2. (Castelnuovo) Let X be a smooth projective surface with
q(X) = 0 = P2(X). Then X is rational.

Example 8.3. Let i : X → P3
k be a smooth hypersurface of degree d.

The short exact sequence of sheaves 0 → L(−d) → OP3
k
→ OX → 0 on

P3
k induces a long exact sequence in cohomology, where by the standard

cohomology vanishing on P3
k, H1(P3

k, i∗OX) = 0. Since by [2, III, Lemma
2.10] H1(X,OX) ∼= H1(P3

k, i∗OX) = 0 every such hypersurface X has q(X) =
0. Furthermore, ωX ∼= OX(d−n−1), whereOX(1) is the restriction ofOP3

k
(1)

to X. It follows that if d ≤ n, then Pm = 0 for all m ≥ 1 and X is rational
by Theorem 8.2. If d = n+ 1, then ωX ∼= OX and Pm = 1 for all m ≥ 1, and
if d ≥ n+ 2, then P1(X) > 0; i.e. these hypersurfaces cannot be rational.

Recall that a smooth projective variety of dimension n is unirational, if
there is a dominant rational map Pnk 99K X. Hence a variety is rational (resp.
unirational) if its function field is a purely transcendental field extension
(resp. is contained in a purely transcendental field extension) of k.

If C is a smooth projective unirational curve, the corresponding dominant
rational map f : P1

k 99K C is a surjective morphism, which implies that
g(C) = 0, thus C is rational. The question wether or nor every unirational
variety is rational is Lüroth’s problem. For surfaces Theorem 8.2 implies:

Corollary 8.4. Every smooth projective unirational surface is rational.

Proof. (of Corollary of 8.4) If X is smooth projective unirational surface,
there is a dominant rational map P2

k 99K X. By the Factorization Theorem
6.4 this map can be factored as a finite sequence of monoidal transformations
and their inverses. Since q and P2 are invariant under monoidal transforma-
tion we have q(X) = 0 = P2(X) and it follows from Castelnuovo’s Theorem
8.2 that X is rational. �

To sketch the proof of Theorem 8.2 we start with the following Theorem
proved by Noether-Enriques:

Theorem 8.5. (Noether-Enriques) Let X be a smooth projective surface and
π : X → C a morphism to a smooth projective curve C. If P ∈ C is a point
such that π−1(P ) ∼= P1

k, then there exists an open subset U ⊆ C containing
P such that π−1(U) is isomorphic to U × P1

k over U .

NB. If C ∼= P1
k, this Theorem implies that X ∼ P1

k × P1
k, hence X ∼ P2

k.

Proof. See [1, Theorem III.4]. �

The above Theorem gives a criterion for when a smooth projective surface
X is rational. To construct a morphism π : X → P1

k as in Theorem 8.5 one
considers morphisms coming from suitable divisors. Crucial and not obvious
is the following Lemma:



27

Lemma 8.6. Let X be a minimal smooth projective surface (that is, X
is a smooth projective surface which does not contain curves C ∼= P1

k with
C2 = −1) with q(X) = 0 = P2(X). Then there is a curve C on X with
C ∼= P1

k and C2 ≥ 0.

Proof. (of Theorem 8.2, assuming Lemma 8.6) If X is a smooth projective
surface, Theorem 6.11 shows that X admits a birational morphism X → Xn

to a minimal smooth projective surface Xn. Since q(Xn) = 0 and P2(Xn) = 0
it suffices to prove the Theorem for a minimal smooth projective surface Xn

(then X ∼ Xn ∼ P2
k) and we may assume X = Xn is minimal. By Lemma

8.6 there is a curve C on X with C ∼= P1
k and C2 ≥ 0. Tensoring the

exact sequence 0 → L(−C) → OX → OC → 0 with L(C) yields the exact
sequence

0→ OX → L(C)→ OC ⊗ L(C)→ 0.

Since q(X) = dimk H1(X,OX) = 0 we see that

dimk H0(X,L(C)) = dimk H0(X,OX) + dimk H0(X,OC ⊗ L(C))

= 1 + dimk H0(X,OC ⊗ L(C)).

The Riemann-Roch Theorem for curves 3.3 implies that

dimk H0(C,OC ⊗L(C)) = deg(OC ⊗L(C)) + l(ωc−OC ⊗L(C)) + 1− g(C),

where deg(OC ⊗ L(C)) = C2 ≥ 0 by Example 4.7(a) and g(C) = 0 since
C ∼= P1

k. Furthermore ωC −OC ⊗ L(C) = ωC ⊗OC ⊗ L(−C) = OP1
k
(−2)⊗

OC ⊗ L(−C) and deg(OP1
k
(−2)⊗OC ⊗ L(−C)) = −2− deg(OC ⊗ L(C) =

−2− C2 < 0, hence l(ωC −OC ⊗ L(C)) = 0, and therefore

l(L(C)) = dimk H0(X,L(C)) = 2 + C2 ≥ 2.

This means the projective space |C| ∼= Pl(L(C))−1
k has positive dimension and

there is a D ∈ |C| such that C 6= mD for all m ≥ 0. Let |V | be the
linear system generated by C and D an let π : X 99K P1

k be the induced
rational map. If |V | is base-point free, π is a morphism and has a fiber
π−1(P ) ∼= P1

k, so that by Theorem 8.5 X is rational. If |V | has a base point

P , let π̃ : X̃ → X be the blow up of P on X with exceptional curve E. Since
P is a base point, it lies on every divisor in |V |. Since C is a smooth curve

π̃∗(C) = C̃ + E and C̃ ∼= C ∼= P1
k, i.e. X̃ is rational by Theorem 8.5. Since

the set where π is not defined is a finite set of closed points one obtains after
a finite number of blow ups a birational morphism from a rational surface
to X. �

9. Ruled Surfaces

In this section we mainly follow Beauville, see [1, Chapter III].

Definition 9.1. A smooth projective surface X is ruled (over C), if there
is a smooth projective curve C such that X ∼ C × P1

k. If C = P1
k, then X

is rational.
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Examples 9.2. (a) If C is a smooth projective curve, then C ×P1
k is ruled.

(b) Let C be a smooth projective curve and let E be a locally free sheave of
rank 2 on C. Then the associated projective bundle PC(E) is a ruled surface
(more precisely, let S = ⊕d>0S

d(E) be the symmetric algebra associated
with E [2, II, Exercise 5.16]. Then PC(E) = Proj(S) [2, pg. 162]. There is
a projection morphism π : PC(E)→ C such that if E is free on an open set
U ⊆ C, then π−1(U) ∼= P1

U = P1
k × U ; hence PC(E) is a ruled surface).

Definition 9.3. A smooth projective surface X is geometrically ruled (over
C), if there is a surjective morphism π : X → C to a smooth projective
curve C such that each fiber is isomorphic to P1

k.

Proposition 9.4. Every geometrically ruled surface is ruled.

Proof. This follows directly from the Noether-Enriques Theorem 8.5: For
a geometrically ruled surface X with morphism π : X → C and P ∈ C,
by definition π−1(P ) ∼= P1

k. By Theorem 8.5 there is an open set U ⊂ C
containing P such that π−1(U) ∼= U × P1

k. In particular, the fibration π :
X → C is locally trivial and X is ruled. �

Lemma 9.5. Let X be a ruled surface over C. Then q(X) = g(C) and
Pm(X) = 0 for all m ≥ 1; in particular κ(X) = −∞.

Proof. We may assume X = C × P1
k for a smooth projective curve C. Let

p1 : X → C and p2 : X → P1
k be the projections. There is an isomorphism

Ω1
X
∼= p∗1Ω

1
C ⊕ p∗2Ω1

P1
k

which implies H1(X,Ω1
X) ∼= H0(C, ωC) ⊕ H0(P1

k, ωP1
k
).

Hence q(X) = g(C) + g(P1
k) = g(C).

For any two locally free sheaves F on C and G on P1
k there is an isomor-

phism H0(X,F)⊗H0(P1
k,G)→ H0(X, p∗1F⊗p∗2G). In particular, this implies

that H0(C, ω⊗mC )⊗ H0(P1
k, ω

⊗m
P1
k

) ∼= H0(X,ω⊗mX ) = 0 for m ≥ 1. �

Proposition 9.6. (a) Let X be a geometrically ruled surface over C. Then
there is a locally free sheaf E of rank 2 on C such that X ∼= PC(E) over C.

(b) If E and E ′ are two locally free sheaves of rank 2 on C, then PC(Ȩ) ∼=
PC(E ′) if and only if E ′ ∼= E ⊗ L for some line bundle L on C.

Proof. If X is geometrically ruled over C, Proposition 9.4 implies that the
fibration π : X → C is locally trivial. The isomorphism classes of such
bundles are bijection with the set H1(C,G) where G is the sheaf of (non-
abelian) groups G = GL(2,OC) of invertible 2 × 2 matrices with entries
in OC . The Proposition follows from this, for details see [1, Proposition
III.7]. �

Theorem 9.7. Let C be a smooth projective curve with g(C) > 0. Then the
relatively minimal models of C×P1

k are the geometrically ruled surfaces, i.e.
the projective bundles PC(E).

Lemma 9.8. Let X be a minimal smooth projective surface and π : X → C
a morphism with generic fiber isomorph to P1

k. Then X is a geometrically
ruled surface over C (with respect to π).
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Proof. �

For the proof of Theorem 9.7 we need the following weaker version of
the Factorization Theorem 6.4: Let φ : S 99K X be a rational map from
a smooth projective surface to a smooth projective variety. Then there
exists a smooth projective surface S ′, a morphism fn : S ′ → S which is the
composite of n monoidal transformations and a morphism f : S ′ → X such
that φ ◦ fn = f ; see [1, Theorem II.7].

Proof. (of Theorem 9.7). Let π : X → C be a geometrically ruled surface.
To show X is minimal it suffices to show that X contains no exceptional
curves E of the first kind. Since any fiber F of π has F 2 = 0 no fiber can be
an exceptional curve. If E is an exceptional curve of the first kind, then E is
not a fiber and therefore f(E) = C. Since then g(E) ≥ g(C) and g(E) = 0,
it follows that g(C) = 0, hence C ∼= P1

k, which is a contradiction. Hence any
such geometrically ruled surface is minimal.

Assume X is a relatively minimal model of C×P1
k. We show X is geometri-

cally ruled over C. Let φ : X 99K C×Y be the rational map, q : C×P1 → P1
k

the projection, and consider q ◦ φ : X 99K C × P1
k. By the above there is a

smooth projective surface X ′, together with a finite number n of monoidal
transformations fn : X ′ → X and a morphism f : X ′ → C × P1

k such that
fn ◦ (q ◦ φ) = f . Let n be the minimal number of monoidal transformations
such that there is a such a diagram and assume n > 0. Let E be the excep-
tional curve on X ′ which is contracted to a point under the first monoidal
transformation. Then f(E) is a point (else f(E) = C which implies C is

rational). By a universal property of a monoidal transformation (if X̃ → X

is a moinoidal transformation with exceptional curve Eand f : X̃ → Y
is any morphism to a variety that contracts E to a point, then f factors
through X, see [1, Remarks II.13]) f factors through X which contradicts
the minimality of n. Hence n = 0 and f = q ◦ φ : X → C is a morphism
with generic fiber isomorphic to P1

k. By Lemma 9.8 X is geometrically ruled
(with respect to f : X → C). �

The above proof uses repeatedly the fact that C is not rational and does
not apply to rational surfaces. The study of geometrically ruled surface
π : X → C over a fixed arbitrary smooth projective curve C is by Proposition
9.6 equivalent to the study of the projective bundles associated to locally
free sheaves of rank 2 on C.

If E is such a locally free sheaf on a smooth projective curve C, then E
always fits in a short exact sequence of the form

0→ L → E →M→ 0,

where L and M are line bundles on C; however, this short exact sequence
is not split in general. If C = P1

k, we have the following:

Proposition 9.9. Let E be a locally free sheaf of rank 2 on P1
k. Then

E ∼= OP1
k
⊕OP1

k
(n) for some n ≥ 0.
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In particular, if X is a geometrically ruled surface over P1
k, then

X ∼= PP1
k
(OP1

k
⊕OP1

k
(n)) for some n ≥ 0.

Proof. [1, Proposition III.15]. �

Definition 9.10. The Hirzebruch surface (or the rational scroll) Fn (n ≥ 0)
is the geometrically ruled surface over P1

k associated to locally free sheaf
OP1

k
⊕OP 1

k
(n)) on P1

k.

The surface F0 is isomorphic to P1
k × P1

k, hence rational. On the other
hand F1 is isomorphic to the blow up of a point on P1

k, hence rational but
not minimal. More generally, one can show (using the intersection pairing
on a geometrically ruled surface):

Proposition 9.11. The surfaces Fn are minimal, unless n = 1. Further-
more, Fn ∼= Fm if and only if n = m.

Proof. [1, Proposition IV.1(iii)].
�

Finally, we have

Theorem 9.12. Let X be a minimal rational surface. Then X ∼= P2
k or

X ∼= Fn for some n 6= 1.

Proof. [1, Theorem V.10]. �


