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Abstract

ABSTRACT

Quantum integrable system has beautiful mathematical structure with rich con-
tents of physics, which has been playing an important role in many fields in physics
and mathematics, such as field theory, string theory, statistic physics, condensed matter
physics, quantum group, etc. When studying integrable systems, computational alge-
braic method can be a powerful tool, in which the computation of Groebner basis is the
most important part.

In this thesis, one tries to compare multiple traditional methods for computing
Groebner basis. And we put forward a new technique to realize the massively paral-
lel computation of Buchberger algorithm over finite field via GPI-space framework, a
workflow managing system, which will largely increase the speed of computation. For
analysis of XXX and XXZ model of integrable spin chain, it can be used in checking
the completeness of Bethe ansatz, calculating partition functions, etc. And then realize
the goal to analyze more sophisticated model of integrable spin chain. The advantage
of this method is that parallelization of the well-implemented Buchberger algorithm can

promote the computation efficiency at a large scale.

Key Words: Quantum Integrable System, Computational Algebraic Geometry, Paral-

lel Computation
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Integrable systems in high energy physics

Integrable systems play a significant role in the field of high energy physics, of-
fering powerful mathematical tools to study and understand the dynamics of physical
systems. These systems exhibit remarkable properties that allow for exact solutions,
making them valuable in both theoretical investigations and practical applications.

In high energy physics, integrable systems refer to physical models that possess
an extensive number of conserved quantities. These quantities are quantities that re-
main constant over time, providing valuable insights into the underlying dynamics. In-
tegrability implies the existence of a sufficient number of conserved quantities to fully
determine the system’s evolution.

One of the fundamental concepts in integrable systems is that of a soliton. Solitons
are stable, localized wave-like entities that can propagate through a medium without
dispersing or changing their shape. They behave as “particles” within the system, and
their interactions can be described exactly through mathematical equations. Solitons
have been observed experimentally in various physical systems, such as water waves,
optical fibers, and even in certain field theories in high energy physics.

Integrable systems are typically associated with nonlinear partial differential equa-
tions (PDEs) that govern the dynamics of the system. These equations are often derived
from specific physical models, such as classical field theories or quantum mechanical
systems. The equations shed lights on a range of mathematical structures, including
symmetries and some algebraic properties. And such properties enable their integrabil-
ity.

The study of integrable systems involves a combination of mathematical tech-
niques, such as algebraic geometry, complex analysis, and the theory of special func-
tions. These tools allow researchers to obtain exact solutions, analyze the system’s sym-
metries, and explore its behavior in various regimes.

Integrable systems find applications in several areas of high energy physics. For
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Chapter 1 Introduction

example, they have been used to study the dynamics of gauge theories, which are fun-
damental in understanding the strong force interactions between elementary particles.
Integrable models have also shed light on the behavior of string theories and their con-
nections to gravity through the AdS/CFT correspondence.

Moreover, integrable systems have been employed in condensed matter physics to
describe phenomena like quantum spin chains and low-dimensional magnets. They have
provided valuable insights into the behavior of these complex systems, allowing for a
deeper understanding of their properties.

In summary, integrable systems offer a powerful framework for studying the dy-
namics of physical systems in high energy physics. Their exact solvability and rich
mathematical structures make them indispensable tools for theoretical investigations,
and their applications extend to various areas of physics, including gauge theories, string

theory, and condensed matter physics.

1.2 Spin chain model and computational algebraic geometry

Integrable spin chain models serve as valuable tools in high energy physics for
studying the behavior of quantum systems with many interacting spins. These models
capture the collective behavior of spins and provide insights into various phenomena,
such as quantum phase transitions and the emergence of exotic states of matter.

A spin chain consists of a linear array of spins, where each spin can be in a particular
quantum state. The interaction between neighboring spins gives rise to the collective
dynamics of the system. Integrability in spin chain models implies the existence of an
extensive number of conserved quantities, which determine the system’s behavior.

The most well-known example of an integrable spin chain model is the Heisenberg
spin chain, which describes the interactions between quantum spins governed by the
famous Heisenberg exchange interaction. The model’s Hamiltonian, which represents
the total energy of the system, exhibits an underlying symmetry algebra and possesses
a rich mathematical structure.

The integrability of spin chain models makes it possible to calculate of various

2



Chapter 1 Introduction

physical objects exactly, including correlation functions and so on. The Bethe ansatz
technique, a powerful mathematical method, plays a crucial role in solving these mod-
els. The Bethe ansatz provides a systematic way of finding the exact eigenstates of the
Hamiltonian by exploiting the integrability of the system. This allows for a detailed
understanding of the system’s properties, including its ground state, excited states, and
their dynamics.

Computational algebraic geometry provides a powerful approach to studying inte-
grable spin chain models. Algebraic geometry deals with the study of geometric objects
defined by polynomial equations. In the context of integrable systems, computational al-
gebraic geometry provides numerical and symbolic methods for solving the underlying
equations and analyzing their solutions.

By formulating the problem in the language of algebraic geometry, researchers can
exploit powerful algorithms and techniques to study the properties of integrable spin
chain models. Computational methods such as Grobner basis computations, numeri-
cal algebraic geometry, and geometric algorithms enable the analysis of the model’s
symmetries, computation of conserved quantities, and determination of the system’s
integrability conditions.

Furthermore, computational algebraic geometry facilitates the exploration of the
phase diagram and the identification of critical points, which are crucial for understand-
ing the system’s phase transitions. It also enables the investigation of entanglement
properties, quantum correlations, and the behavior of the system under various pertur-
bations.

In summary, integrable spin chain models provide a framework for studying the
collective behavior of quantum systems with many interacting spins. Computational al-
gebraic geometry offers powerful tools and techniques to analyze and solve these mod-
els, allowing for a deeper understanding of their properties, symmetries, and dynamics.
The combination of integrable spin chain models and computational algebraic geome-
try contributes to advancing our knowledge of high energy physics and the behavior of

quantum systems.
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1.3 Arrangement of this thesis

The thesis will be written in 5 parts.

In chapter 2, one will have a brief introduction to integrable spin chain model,
which is the main physical object in this thesis. The Heisenberg XXX and XXZ spin
chain model will be described in detail, together with the Bethe ansatz equation method
(BAESs) for both models.

In chapter 3, computational algebraic geometry (CAG) method will be introduced.
Firstly some basic facts including most of the definitions and theorems needed will be
stated. Then one can have a look at the Grobner basis computation. At the end there
will be some introduction to the relations between spin chain and CAG.

In chapter 4, one will get to know the algorithms to calculate Grobner basis , mainly,
Buchberger and F4 algorithms. Their current implementation will also be introduced.

In chapter 5, there will be 2 certain applications of CAG to spin chain model: count-
ing solutions of BAEs in XXX spin chain model and finding the sum of solutions for
Loschmidt problem in XXZ spin chain model. For the 2 problems, the choice of Buch-
berger algorithm and the reason will be presented.

In chapter 6, one will be introduced to the idea of massive parallelization. Mod-
ern tools as SINGULAR/GPI-Space will be presented. And the creative work of parallel
Buchberger algorithm will be introduced with certain applications to the 2 problems

above.
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Chapter 2 Introduction to Integrable Spin Chain
Model

2.1 Overiview of one-dimensional quantum integrable systems

One-dimensional quantum integrable systems are highly interesting and important
in the field of theoretical physics. They represent quantum mechanical models that ex-
hibit remarkable properties, such as exact solvability and an extensive number of con-
served quantities. These systems provide valuable insights into the behavior of quantum
particles and have connections to various areas of physics, including condensed matter
physics, quantum field theory, and statistical mechanics.

A one-dimensional quantum integrable system typically consists of a chain or lat-
tice of quantum particles, such as spins or interacting fermions, arranged along a line.
The interactions between the particles are usually described by specific mathematical
models, often involving pairwise interactions or long-range forces. These models can
be derived from realistic physical systems or proposed as simplified theoretical con-
structs to study fundamental aspects of quantum mechanics.

The main characteristic of integrable systems is the presence of a sufficiently large
number of conserved quantities. These quantities are operators that commute with the
Hamiltonian of the system and therefore remain constant during its time evolution. The
existence of these conserved quantities allows for the system’s exact solvability and pro-
vides a deeper understanding of its dynamics.

One of the prominent examples of one-dimensional quantum integrable systems is
the Heisenberg spin chain, which describes the behavior of interacting quantum spins.
This model has a rich mathematical structure and can be solved exactly using techniques
like the Bethe ansatz, enabling the calculation of various physical quantities and the
exploration of the system’s properties.

Another essential class of one-dimensional quantum integrable systems is the Lut-

tinger liquid model, which describes interacting fermions in one dimension. Luttinger
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liquids exhibit unique features, such as fractionalized excitations and nontrivial correla-
tions, and have connections to the physics of one-dimensional conductors and quantum
wires.

The study of one-dimensional quantum integrable systems involves the application
of powerful mathematical techniques, such as the Bethe ansatz, algebraic methods, and
the theory of special functions. These methods allow researchers to obtain exact solu-
tions for the wave functions, energy spectra, and correlation functions of the systems.

The field of one-dimensional quantum integrable systems has far-reaching impli-
cations in various branches of physics. In condensed matter physics, these systems pro-
vide insights into the behavior of low-dimensional materials, such as one-dimensional
conductors, quantum magnets, and interacting electron systems. They also play a role
in the study of quantum entanglement, topological phases, and quantum information
processing.

Furthermore, one-dimensional quantum integrable systems have connections to
quantum field theory through the AdS/CFT correspondence, where they are related to
certain string theories in higher-dimensional spaces. This connection offers a unique
perspective on the interplay between quantum mechanics and gravity, as well as the
study of strong interactions.

In summary, one-dimensional quantum integrable systems are intriguing models
that possess exact solvability and an extensive number of conserved quantities. They
serve as valuable tools for understanding quantum mechanics, condensed matter physics,
and quantum field theory. The study of these systems involves the application of so-
phisticated mathematical methods and contributes to advancing our knowledge of fun-

damental physical phenomena.
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2.2 Heisenberg XXX and XXZ spin chain model

2.2.1 Heisenberg XXX model

The Heisenberg XXX spin chain model is a paradigmatic example of a one-
dimensional quantum integrable system. It describes the behavior of interacting quan-
tum spins arranged in a linear chain and is named after Werner Heisenberg, one of the
pioneers of quantum mechanics.

In the Heisenberg XXX spin chain model, each site of the chain is associated with
a spin-1/2 particle, which can be in either an "up” or "down” state. The interaction
between neighboring spins is governed by the Heisenberg exchange interaction, which
is characterized by a coupling constant usually denoted as J.

Here we consider SU (2) invariant XXX spin chain, so the coupling constant J = i

The Hamiltonian of the Heisenberg XXX spin chain model is given by:

L
1 - - - -
Hyxx =7 2@ 5=, 3141 =5) 2.2.1)
i=1

Here L is the length of the spin chain and periodic boundary condition is applied.
Note that 6 = (6, 65, 03) are the 22 Pauli matrices and 6, denotes the spin operator at
position k. At each site, the spin can have 2 orientations. So the Hilbert space spanned
by them has dimension of 2.

The Heisenberg XXX spin chain model exhibits several intriguing properties. One
of its most significant features is its integrability, which means that it possesses an ex-
tensive number of conserved quantities. These conserved quantities are operators that
commute with the Hamiltonian, and they can be used to fully determine the system’s
dynamics.

The exact solvability of the Heisenberg XXX spin chain model is achieved through
the Bethe ansatz technique. The Bethe ansatz provides a systematic way of finding the
exact eigenstates of the Hamiltonian and obtaining the corresponding energy spectra.
This technique has been instrumental in understanding the properties of the model, in-

cluding its ground state, excited states, and their dynamics.
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Chapter 2 Introduction to Integrable Spin Chain Model

The Heisenberg XXX spin chain model has connections to various areas of physics.
In condensed matter physics, it serves as a model for describing the behavior of one-
dimensional magnetic systems, such as chains of interacting spins in magnetic materials.
The model captures important phenomena, such as magnetic ordering, quantum phase
transitions, and the emergence of exotic states of matter.

Furthermore, the Heisenberg XXX spin chain model has connections to quantum
field theory through the AdS/CFT correspondence. This correspondence relates cer-
tain string theories in higher-dimensional spaces to conformal field theories in lower
dimensions. The study of the Heisenberg XXX spin chain and its generalizations has
provided insights into the behavior of quantum field theories and their dual gravitational
descriptions.

In summary, the Heisenberg XXX spin chain model is a fundamental example of a
one-dimensional quantum integrable system. It describes the interactions between quan-
tum spins in a linear chain and possesses remarkable properties, including integrability
and exact solvability. The model finds applications in condensed matter physics and
quantum field theory, contributing to our understanding of magnetic systems, quantum

phase transitions, and the interplay between quantum mechanics and gravity.

2.2.2 Heisenberg XXZ model

The Heisenberg XXZ spin chain model is another important example of a one-
dimensional quantum integrable system. It shares similarities with the Heisenberg XXX
spin chain model but includes an anisotropic term that distinguishes it.

In the Heisenberg XXZ spin chain model, like in the XXX model, quantum spins
are arranged in a linear chain, and each site is associated with a spin-1/2 particle.
However, the interaction between neighboring spins in the XXZ model includes an
anisotropic term that differentiates it from the isotropic XXX model.

The Hamiltonian of the Heisenberg XXZ spin chain model is given by:
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L

__1 11 2 2 33 .-

Hxxx = _5 Zl(aj Oin + 0i0;,1 + AO’J- 6j+1)’ Or4+1 =0 (2.2.2)
j:

where ¢ = (0'}, 0']2, 0']3) are the Pauli matrices corresponding to the x, y, z compo-
nents of the spin at site j, respectively. The sum runs over all pairs of neighboring spins
in the chain. The parameter A = —cosy represents the anisotropy of the model, which
determines the strength of the interaction along the z-direction relative to the x-y plane.

The Heisenberg XXZ spin chain model exhibits rich physics, and its behavior de-
pends on the value of the anisotropy parameter A. For A = 1, the model is isotropic
and reduces to the Heisenberg XXX spin chain model. When A > 1, the system fa-
vors alignment along the z-direction, leading to ferromagnetic behavior. Conversely,
for A < 1, the system prefers alignment in the x-y plane, resulting in antiferromagnetic
behavior.

Similar to the Heisenberg XXX spin chain model, the Heisenberg XXZ spin chain
model is integrable, meaning it possesses an extensive number of conserved quantities.
The Bethe ansatz technique can be applied to obtain exact solutions for the eigenstates
and energy spectra of the model, providing valuable insights into its properties and dy-
namics.

The Heisenberg XXZ spin chain model finds applications in various areas of
physics. In condensed matter physics, it serves as a model for studying magnetic sys-
tems with anisotropic interactions, such as spin chains in materials exhibiting spin-orbit
coupling. The model helps to understand the emergence of magnetic ordering, quantum
phase transitions, and the interplay between different types of interactions.

Furthermore, the Heisenberg XXZ spin chain model has connections to quantum
field theory, statistical mechanics, and quantum information theory. It provides in-
sights into the behavior of interacting quantum systems, entanglement properties, and
the emergence of critical phenomena.

In summary, the Heisenberg XXZ spin chain model is a one-dimensional quan-

tum integrable system that includes anisotropic interactions between quantum spins. It
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exhibits rich physics, ranging from ferromagnetic to antiferromagnetic behavior, de-
pending on the value of the anisotropy parameter A. The model’s integrability and exact
solvability, along with its connections to various fields, make it a valuable tool for under-
standing magnetic systems, quantum phase transitions, and the behavior of interacting

quantum systems.

2.3 Bethe ansatz method for solving integrable spin chain model

The Bethe ansatz method is a powerful mathematical technique used to solve in-
tegrable models, particularly spin chain models, in theoretical physics. It was initially
developed by Hans Bethe in the 1930s to solve the Heisenberg spin chain model and has
since become a cornerstone of integrable systems theory.

The Bethe ansatz method provides a systematic approach to finding the exact eigen-
states and energy spectra of a spin chain model. It exploits the integrability of the sys-
tem, which implies the existence of an extensive number of conserved quantities that
commute with the Hamiltonian.

The basic idea behind the Bethe ansatz method is to construct a set of “Bethe
ansatz” or ’quasi-particle” states that diagonalize the Hamiltonian. These states are
composed of individual excitations, often referred to as “quasi-particles,” that propa-
gate through the spin chain and interact with each other.

To find the eigenstates of the Hamiltonian, one starts by assuming a particular form
for the Bethe ansatz wave function. This form incorporates the quasi-particle excitations
and their properties, such as their momenta and polarization. The ansatz is typically
chosen based on the symmetries and physical properties of the system.

Next, one imposes certain conditions, known as the Bethe equations, on the param-
eters of the wave function. These equations encode the requirement that the wave func-
tion must satisfy the Schrodinger equation and the boundary conditions of the spin chain.
Solving the Bethe equations determines the allowed momenta of the quasi-particles and
the corresponding eigenstates of the Hamiltonian.

The Bethe ansatz method enables the calculation of various physical quantities of

10
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the spin chain model, including the energy spectrum, correlation functions, and scat-
tering properties of the quasi-particles. It provides exact solutions for these quantities,
allowing for a detailed understanding of the system’s behavior and dynamics.

The method has found applications in diverse areas of theoretical physics, ranging
from condensed matter physics and statistical mechanics to quantum field theory and
string theory. It has been used to study a wide range of spin chain models, including the
Heisenberg XXX spin chain, the Heisenberg XXZ spin chain, and many others.

In summary, the Bethe ansatz method is a powerful mathematical technique used to
solve integrable spin chain models. It provides a systematic approach to finding the exact
eigenstates and energy spectra of the models by constructing quasi-particle excitations
and imposing Bethe equations. The method has had significant impact in various fields
of theoretical physics, enabling precise calculations and deeper insights into the behavior
of quantum systems.

Here we give the Bethe ansatz equation formalism of Heisenberg XXX and XXZ

spin chain model.

2.3.1 Bethe ansatz for Heisenberg XXX spin chain

One can solve the Heisenberg XXX spin chain via constructing the following Bethe

ansatz equation:

uj +il2 L Nuj—uk+i
u; —il2 iy W e
Here each eigenstate is labeled by a set of variables {uy, -, up} called the rapidities

where N is the number of flipped spins. And the corresponding eigenvalue is denoted
by

N

> 1 (2.3.4)

Ey=-
N S+ 14

| =

According to the definition of the Bethe ansatz, one may suppose that there’s a 1-1 onto
morphism between the solution set and the eigenstate set of the spin chain system. But

unfortunately, this is a false assumption. There are certain kind of solutions that one

11
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should get rid of. Here one can mainly consider four specific kind of solutions of the
interest !

(1)  Coinciding rapidities

As is known, one can always solve Bethe ansatz equations without constraints,
with the solutions in the form of {u,u,u, ---,un}. They are correct solutions of BAEs
mathematically. When considering coinciding solutions, the BAEs are different from

the form derived below. Recall the RT'T relation for XXX/, spin chain

AW B(u) = f (A, W) B(u)A(A) + g(4, u) B(D)A(p), (2.3.5)
D(A)B(u) = f(u, A)B()D(A) + g(u, A)B(A)D(p),

B(A)B(u) = B(1)B(4).

Using the relations above, one can derive the following results [>>-6%!

AN)B(u)* = a (4, w)B(u)* A(A) + ay(4, w)B()B' (1) A() (2.3.6)
+ a3(4, W) B(A)B(u) A(u) + a4 (4, w) B(A)B(u) A’ (1)
D(A)B(u)* = by (A, 1) B(u)* D(A) + by(4, 4) B(A)B' (1) D(11)
+ b3(A, ) B(A)B(u)A(p) + by(4, ) B(A)B(u) D' (1)
here a,(4, 1) and b;(A, ) (i = 1,2, 3,4) are functions with respect to f(, 4) and g(u, 4).
Since the occurrence of coinciding rapidities, one have the following relations B'(u) =

0, B(u) together with A’ (u) = d,A(u) and D’ (u) = 0, D(u).

To make sure that the off-shell Bethe state
N
%) = Bw)? [ [ Bw)l 1+) (2.3.7)
i=1
is an eigenstate of the transfer matrix, one can compute
T(v)|¥) = (A(v) + D(v))|¥) (2.3.8)

by moving A(u) and D(u), which are diagonal elements of the matrix, to the right
hand side and acting on the pseudovacuum state using the known commutation rela-

tions (2.3.6). By demanding the so-called "unwanted terms” to be 0, one finally has

12
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the usual BAEs. There are two major modifications for current case. Firstly, A’(v) and
D’ (v) together with the resuting a’ (1) and d’(u) could change the form of the cancel-
lation conditions. Secondly, B’(u) existence means that one need to apply cancelation
conditions to the states with B’(u) involving. If more coinciding rapidities appears, one
can always obtain more additional cancellation conditions via similar analysis.

One can actually obtain the cancellation conditions by demanding the eigen-
value of transfer matrix to be regular at the Bethe roots. Considering the solution of

BAEs for a spin chain of length L in the spin-s representation with K + N magnons

{u,u, -+~ ,u,uy, -+ ,upn}. The eigenvalue of the transfer matrix is as following
N . N ,
A—u—i\KppA-u - Amuti\K oy A—uy i
T(A) = a(4 (—) Y hda (—> 20T
(4) = a(d) A—u U A—u; +d(d) A—u H A—u;
J=1 J Jj=1 J
(2.3.9)
here
aW)=@A+iHt,  dr)=@A-ist. (2.3.10)

Then, as one can see, T'(4) is a polynomial with respect to A with poles at A =
u,uy, -, up. By requiring the residues of these ‘poles’ to vanish, one obtains the BAEs.

For u = uj, (j=1,:-,N)one has
B; = a(u)(u; —u— )"0, — i) + du)u; —u+D*0uu; +) =0  (23.11)

As done above, let 4 = u be regular, one gets the following conditions

al

R,=W(T(/1)(/1—u)K) =0, [=0-,K-1. (2.3.12)

| A=u

For the Heisenberg spin chain, it was found in 1351 that there are no solutions with K > 3
and the ones with more than one group of repeated roots such as {u,u, v, v,uy, -+ ,un}.
However, one can find many solutions of the form {u, u,u;, ---,up}. So, alongside the
general believe that these are not physical solutions, currently there lacks a rigorous

proof of this assertion for spin chain model.

13
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(2)  Solutions beyond the equator

one always use the constraint that the magnons falls in the region N < L/2 when
searching for physical solutions. And one usually choose to ignore the solutions when
N > L/2 since the solutions are included in the previous situation. To understand the
inclusion, one can consider the N < L/2 number of magnons’ Bethe state of a spin
chain with length L. The Bethe vector is generated by acting N operators B(u) on the

pseudovacuum states
|¥) = B(u;) -+ B(uy)| 1) (2.3.13)

Here the rapidities satisfies the BAEs of N position particles. N down spins and L — N
up spins are included in this state. One can generate the eigenstates with the same
amount of up spins and down spins by acting L — N operators C(v) on the flipped

pseudovacuum states
|¥) = C(v)) - Cv; M| LF) (2.3.14)

Here the rapidities vy, -+, v _ satisfies the BAEs of L — N position particles. Then
one have |¥) = |¥). By this, (2.3.13) and (2.3.13) are only two ways of constructing
the same eigenstates. One should know that u = {u, -, un} and v = {vy, -, 07 _n}
should be related.

To get this result, one can define the Baxter polynomials

N L-N
0, = [Jw-uw). Oy =J]w-uvp. (2.3.15)
k=1 k=1

One can show that the two polynomials satisfy the Wronskian relation. Then actually
one can always know a polynomial on the condition of given the other one. They are
actually two solutions of Baxter’s T'Q-relation. The above analysis shows that one can
restrict the solution to one side of the equator, say N < L/2, safely. Rest of the solutions

on the other side correspond to the same physical states, as we say, included.

14
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(3) Solutions at infinity
The Bethe states corresponding to rapidities {u;, u,, -+, u } with none of the ele-

ments at infinity is highest weight state, as we say. This means
L
S*B(uy)B(u,) -+ Buy)|Q) =0, St = Z A (2.3.16)
i=1

One can prove the relation above straightforwardly. At this highest weight state, the spin

L_

reads J = >

N. With the normal notation of quantum mechanics, one can use S~ to
decrease the spins. For a spin-J representation, the dimension reads 2J + 1. Then for

a highest weight state |uy, -+, u ), the following states
(S7)'luy, -+ uy),  n=0,- L-2N (2.3.17)

spans a space of 811(2) algebra for representation. For the completeness of Bethe ansatz,

the number of physical solutions of N -particle BAEs is expected to be

L L
Z, = < > _ ( ) 23.18
LN =N N-1 ( )
And the number of Bethe states is
L2
Y Zyn(L-2N+1)=2" (2.3.19)
N=0

which reads the dimension of the corresponding Hilbert space. The solution of BAEs
allows putting one or more excitations to the infinity. Each rapidity at the infinity cor-

responds to the action of an .S~ since the following fact holds

lim B(u) x S™. (2.3.20)

U—00
Then the solutions at the infinity are physical. To show the completeness of Bethe ansatz,
one only need to count the number of solutions that correspond to primary states. And
one can easily work out the descendants of a primary state. Thus one only need to count
the solutions corresponding to primary states.

(4)  Singular solutions

The solutions of BAE with two of the rapidities being +i/2, say

{il2, =12, u3, -+ ,uy )} (2.3.21)

15
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are singular. To find out the problem at u = +i/2, the simplest way is to consider the

eigenvalues with respect to the rapidities

NI*—‘

N
2 (2.3.22)
PRI VY

Obviously, the function (u> + 1/4)~! has two poles at u = +i/2. Then the solutions
including u = +i/2 are kind of special. They are much more subtle than those above.
That’s because sometimes these solutions are physical but sometimes not. To judge
whether a solution is physical or not, one needs to do a regularization. Such analysis

has been worked out in detail in the work of Nepomechie and Wang **!. The conclusion

is that the solutions are physical as long as the remaining rapidities us, ---, u 5 satisfy
w2\ =302\ e u—uy i
k. ) =[] —2—. k=3.-.N. (2323)
u, —il2 uy + 3il2 e W —uy — i
Jj=3

N 125% + il2 L I3

I1 ) =D

k=3 U, —1

The first equation is the usual BAE and the second one is an additional rule for selection.

2.3.2 Bethe ansatz for Heisenberg XXX spin chain

Basically emerging from the Hamiltonian of the spin chain, the Bethe ansatz equa-
tions of XXZ model can be derived with the following analysis

The R-matrix is given by

sinh(u + %) 0 0 0
0 sinh(u — 1)  sinh(iy) 0
R,, (1) 2 . . (2329
0 sinh(iy)  sinh(u — %) 0
0 0 0 sinh(u + %’)

One can consider diagonal twisted boundary condition. Here it can be used in the alge-

braic Bethe ansatz by a constant matrix

K, = (2.3.25)
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in the auxiliary space. The monodromy matrix and the transfer matrix are then defined

as
M, () = K, R,y R,,w) ... Ry w),  T(u) = tr,M,u), (2.3.26)

One can have the following results after regarding the former one as matrix of operators

acting on L space

- Aw) B@w) - _ -
M, (u) = , T@w) = A@w) + D(u). (2.3.27)

C) D)

One can start doing diagonalization with the pseudovacuum state |Q) = | 1£)
AW|Q) = aw)|Q), Dw)|Q) = dw)|Q), (2.3.28)
here
o \L - \L
a@ = x* (sih@+2))",  d@w =« (sinh@-1)) " (2.3.29)
Bethe states |u) are constructed by acting on |Q) by the B(u) operators,
lu) = B(uy) ... B(uy)|Q). (2.3.30)

If the Bethe roots u = {u, ... ,u,,} satisfy the Bethe ansatz equations

; L
<sinh(uj + Ey)) - M sinh(uj —u +iy)

: =—— - —, (2.3.31)
sinh(u; — % Kt ple]| sinh(u; — uy — iy)
the state |u) diagonalizes the transfer matrix
Twlu) = #w)|u). (2.3.32)
The corresponding eigenvalue,
#) o a(uy ZET) 4 gy LUt (2.3.33)
O(u) O(u)
can be expressed in terms of the O-function defined by
M
O(u) = [ [ sinh(u —u;). (2.3.34)
j=1

. And the analysis of the Bethe roots can be an analogy to what one has done for XXX

model.

17
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2.3.3 Analysis of the completeness of the solutions to BAEs

Here we take the XXX model for example, one can have similar analysis for XXZ
model. One can always solve BAEs for several simple cases by hand, with or without
any constraints, to get all mathematical solutions of them. It is noticed that the multiple
solutions are singular solutions, containing u; = +i/2. To get the correct counting of
the solutions, the basic strategy is to consider the singular solutions and the rest ones
separately. Without loss of generosity, one can introduce an variable w and add the

constraint following

N
w H(u/z. +1/4)-1=0 (2.3.35)
j=1
to the original set of BAE.
To obtain the singular solutions, let u; = i/2 and u, = —i/2 and solve for the rest

of the variables.

Finally, the completeness of Bethe ansatz can be formulated as a statement of the
numbers of solutions of BAEs with various constraints. Denote the number of pairwise
distinct finite solutions for N < L/2 by N} y. Denote the number of singular solutions
by N LS N and the singular physical solutions by N LSSI\}Y. The number of solutions are

counted without multiplicities. The statement of completeness of Bethe ansatz is'!!]

Nix=Niy+ N5 = ()= (5 ) (2.3.36)
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Chapter 3 Introduction to Computational Algebraic
Geometry

3.1 Some facts of affine algebraic geometry

Consider a polynomial ring R = F[z4, ... z,] as is the collection of all polynomials
in n variables z, ... z,, with coeflicients in the field . Here, F can be Q, the rational
numbers, C, the complex numbers, Z/pZ, the finite field of integers modulo a prime
number p, or C(cy, ¢y, ... ¢;), the complex rational functions of parameters cy, ..., ¢,

and so on. The selection of F can largely affect the calculation within this polynomial

ring.

To define the sum in general sense, one need ideal first.

Definition 3.1 An ideal I in the polynomial ring R = F[z, ... z,] is a subset of
R such that,

*0el. Foranytwo f,frb €1, fi+f,€l.Forany fe€l,—-f €.
e ForVfelandVhe R, hf € 1.
The ideal in the polynomial ring R = F[z,, ... z,] generated by a subset .S of R is

the collection of all such polynomials,
Y hif. hER fES. (3.1.1)
i

This ideal is denoted as (.S'). In particular, (1) = R, which is an ideal which contains all
polynomials. Note that even if .S is an infinite set, the sum in (3.1.1) is always restricted
to a sum of a finite number of terms. S is called the generating set of this ideal.

And then, one can have the following properties of ideals.

Theorem 3.1 (Noether) The generating set of an ideal I of R = F[z, ... z,] can
always be chosen to be finite.

This theorem implies that one only needs to consider ideals generated by finite sets

in the polynomial ring R.
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Definition 3.2 Let I be an ideal of R, one can define an equivalence relation,
f~g, ifandonlyif f—gel. 3.1.2)

Here one define an equivalence class, [ f] as the set of all g € R such that g ~ f. The

quotient ring R/I is set of equivalence classes,
R/I ={[f]lf € R}. (3.1.3)

with multiplication [ f{1[f>] = [ f; f>]. (Check this multiplication is well-defined.)

To study the structure of an ideal, it is very useful to consider the algebra-geometry
relation.

Definition 3.3 Let K be a field, F C K. The n-dimensional K-affine space A%
is the set of all n-tuple of K. Given a subset .S’ of the polynomial ring F[z4, ..., z,], its

algebraic set over K is,
Z(S) = {peAE’\ﬁlf(p):O, forevery f € S}. 3.1.4)

If K = [, one can drop the subscript K in Ay and Z(S).

The algebraic set Z(.5) consists of all common solutions of polynomials in .S. Note
that to solve polynomials in .S is equivalent to solve all polynomials simultaneously in
the ideal generated by .S,

Z(8) = Z(S)), (3.1.5)

since if p € Z(.5), then f(p) =0,V f € S. Hence,

hipfip+...+h (@ fi(p)=0, Vh,eR, Vf,€S. (3.1.6)

To learn the structure of an ideal from its algebraic set, one can firstly consider the
empty algebraic set.

The following theorem holds

Theorem 3.2 (Hilbert’s weak Nullstellensatz) Let I be an ideal of F[z, ... z,]
and K be an algebraically closed field, F C K. If Zy () = @, then I = (1).

Remark The field extension K must be algebraically closed. Otherwise, say,

K = F = Q, the ideal (x*> — 2) has empty algebraic set in Q. (The solutions are not
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rational). However, (x> — 2) # (1). On the other hand, F need not be algebraically

closed. I = (1) means,
1=h1f1++hkfk’ fl-GI, hiE[F[Zl,...Zn]. (317)

where h;’s coeflicients are in [, instead of an algebraic extension of [F.
For a general algebraic set, one has the important theorem:
Theorem 3.3 (Hilbert’s Nullstellensatz) Let F be an algebraically closed field

and R = F[z,,... z,]. Let I be an ideal of R. If f € R and,
fp) =0, Vpe zZ{), (3.1.8)

then there exists a positive integer k such that f* € I.
Hilbert’s Nullstellensatz characterizes all polynomials vanishing on Z(I), they are
“not far away” from elements in 1.

Definition 3.4 Let I be an ideal in R, define the radical ideal of I as,
VI={feRFkez* fFeI}. (3.1.9)
For any subset V' of A", define the ideal of V" as
IV)={feR|f(p)=0,VpeV}. (3.1.10)
Then Hilbert’s Nullstellensatz reads, over an algebraically closed field,
1z =VTI. (3.1.11)

An ideal T is called radical, if \/T = I.

If two ideals I and I, have the same algebraic set Z(I;) = Z(I,), then they have
the same radical ideals \/T | = ﬁ ». On the other hand, if two sets in A" have the
same ideal, what could one say about them? To answer this question, the topology of
A" needs to be defined as:

Definition 3.5 (Zariski topology) Define Zariski topology of A{ by setting all

algebraic set to be topologically closed. (Here | need not be algebraic closed.)
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Remark The intersection of any number of Zariski closed sets is closed since,
M zuy=zdJn. (3.1.12)
i i
The union of two closed sets is closed since,
zap|Jzuy =z, =za,n 1), (3.1.13)

At and @ are both closed because Af = Z({0}), @ = Z((1)). That means Zariski
topology is well-defined.
Zariski topology is the foundation of affine algebraic geometry. With this topology,
one can establish the dictionary between algebra and geometry.
Proposition 3.1 (Here F need not be algebraic closed.)
1. If I, C I, are ideals of F[zy, ... z,], Z(1;) D Z(1,)
2. If V} C V, are subsets of A{, Z(V}) D I(V;)
3. For any subset V in A7, Z(Z(V)) = V, the Zariski closure of V.

Proof The first two statements follow directly from the definitions. For the third
one, V C Z(I(V')). Since the latter is Zariski closed, Vc Z(Z(V)). On the other hand,
for any Zariski closed set X containing V', X = Z(I). I C I(V). From statement 1,
X =2Z{) D Z(I(V)). As aclosed set, Z(Z(V)) is contained in any closed set which
contains V', hence Z(Z(V)) = V. |

In the case [ is algebraic closed, the above proposition and Hilbert’s Nullstellensatz
established the one-to-one correspondence between radical ideals in F[z;, ... z,] and
closed sets in Af.

In the following part, the computational aspect of affine algebraic geometry is in-

troduced, to see how to compute objects like I, N I, and Z([).

3.2 @Grbébner basis

3.2.1 One-variable case as an invitation

One may have noticed that ideal is the central concept for the algebraic side of

affine algebraic geometry. An ideal can be generated by different generating sets, some
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may be redundant or complicated. For ideals, choosing a “good basis” can dramatically
simplify algebraic geometry computation just like what one can do in linear algebra.
For the univariate case, there is a natural monomial order < from the degree, for

example, take I = (x> — x — 1), the following ordering holds

l<x<x2<x><x*<..., (3.2.14)

and all monomials are sorted. For any polynomial F, define the leading term, LT(F)
to be the highest monomial in F by this order (with the coefficient). For multivariate
cases, the degree criterion is not fine enough to sort all monomials, so one needs more
general monomial orders.
Definition 3.6 Let M be the set of all monomials with coefficients 1, in the ring

R =F[zy,... z,]. A monomial order < of R is an ordering on M such that,

1. < is a total ordering, which means any two different monomials are sorted by <.

2. <respects monomial products, i.e., if u < v then forany w € M, uw < vw.

3. 1 <u,ifu € M and u is not constant.

There are several important monomial orders. For the ring F[z,, ... z,], one can
use the convention 1 < z, < z,_; < ... < z; for all monomial orders. Given two
ials, g, = 2" ... 23" and g, = z)' ... z0", consider the following orders:

monomials, gy =z, ... z," and g, = z| ... z,", consider the following orders:

* Lexicographic order (lex). First compare a; and ;. If a; < f;, then g; < g,. If
a; = a,, compare a, and f,. Repeat this process until for certain «; and p; the tie
is broken.

* Degree lexicographic order (grlex). First compare the total degrees. If Y./ a; <
> B, then g < g,. If total degrees are equal, compare (a;, f)), (a3, B,) ..
until the tie is broken, like lex.

* Degree reversed lexicographic order (grevlex). First compare the total degrees. If
> < X, B, then g; < g,. If total degrees are equal, compare a,, and $,.
If a, < B,, then g; > g, (reversed!). If a,, = f,, then one may further compare
(a,_1> Po_1), (@,_>, B,_>) ... until the tie is broken, and use the reversed result.

* Block order. This is the combination of lex and other orders. Here one can sepa-
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rate the variables into k blocks, say,

{z1,20, .. 2, = {2y, o 25 P Uz g1h o 2 ) Uz, s 2,0 (B2415)

Furthermore, define the monomial order for variables in each block. To compare
g and g,, firstly compare the first block by the given monomial order. If it is a
tie, it is useful to compare the second block... until the tie is broken.

With a monomial order, one can define the leading term as the highest monomial

(with coeflicient) of a polynomial in this order. To find a stable basis for computation,

one may lead to the concept of Grobner basis.

3.2.2 Grobner basis

Definition 3.7 For an ideal I in F[z, ... z,] with a monomial order, a Grobner

basis G(I) = {gy, ... g, } is a generating set for I such that for each f € I, there always

exists g; € G(I) such that,

LT(g)|LT(f). (3.2.16)

Beyond the definition, here are have some comments on Grobner basis:

1. For F[z,, ... z,], the computation of polynomial division and Buchberger’s Algo-
rithm only used addition, multiplication and division in [F. No algebraic extension
is needed. Let F C K be a field extension. If B = {f},..., fi} C Flz{,... z,],
then the Grobner basis computation of B in K[x, ..., x,] produces a Grobner
basis which is still in F[z, ... z,], irrelevant of the algebraic extension.

. The form of a Grobner basis and computation time dramatically depend on the
monomial order. Usually, greviex is the fastest choice while /ex is the slowest.
However, in some cases, Grobner basis with lex is preferred. In these cases, we
may instead consider some “midway” monomial order the like block order, or
convert a known grevlex basis to lex basis (291

. If all input polynomials are linear, then the reduced Grobner basis is the echelon

form in linear algebra.

The computation of Grobner basis will be introduced in the next section together with

the applications.
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3.2.3 Zero dimensional ideal

A zero dimensional ideal is a special case of ideals such that its algebraic set in an
algebraic closed field is a finite set, i.e., | Zg(I)| < oo. The study of zero dimensional
ideals are crucial for our Bethe Ansatz computations.

One of the important properties of a zero dimensional ideal I define over K is that
the number of solutions (in an algebraically closed field) equals the linear dimension of
the quotient ring

|Zg(I)| = dimg (Ag/T) (3.2.17)

Note that the field K need not be algebraically closed, but the field extension K must be
algebraically closed for this formula. Let G(I) be the Grobner basis of I in any mono-
mial ordering. Since (Ag/I) is linearly spanned by monomials which are not divisible
by any elements in LT(G(1)), the number of solutions, |Z z(I)| equals the number of
monomials which are not divisible by LT(G(I)). This statement provides a valuable
method of determining the number of solutions. In practice, we can use the lattice al-
gorithm[24] to list these monomials.

Let (m, ..., m;) be the monomial basis of Ag/I determined from the above Grob-
ner basis G(I). We can reformulate the algebraic structure of (Ag/I) as matrix opera-
tions. For any f € A,

k
Alm] = Y [mjle,;. ¢, €K, i=1,...k (3.2.18)

Jj=1
The k X k matrix c;; is called the companion matrix. We denote the companion matrix

of the polynomial f by M ;. Itis clear that M ;=M if and only if [ /] = [g] in A/I and
Mpg=Mp+M,, Msy=M; M, =MMyg,. (3.2.19)

Furthermore, if a polynomial f is in the ideal (g) + I, we say the fraction f/g is a
“polynomial” in the quotient ring A/I by the abuse of terminologies. The reason is that,
in this case,

f=gq+s, seI. (3.2.20)
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Hence in the quotient ring A/I, [f] = [gllq]. For a point & € Z(1), if g(&) # 0, then
f(&)/g(€&) = q(&). In this sense, the computation of a fraction over the solution set is
converted to the computation of a polynomial over the solutions.

Furthermore, we define M, = M,. Itis clear that when M, is an invertible

matrix,

My, =M:M;". (3.2.21)

Companion matrix is a powerful tool for computing the sum of values of f evalu-
ated at the algebraic set (solutions) of I over the algebraically closed field extension K.

Let (&;, ..., &) be the elements of |Z z(1)],

k
Y fE) =uM; (3.2.22)
i=1

Hence this sum over solutions over K can be evaluated directly from the Grobner basis
over the field K. It also proves that this sum must be inside K, even though individual

terms may not be.

3.3 Connections between spin chain model and computational al-

gebraic geometry

Computational algebraic geometry plays a crucial role in the study of spin chain
models, particularly in understanding their properties, symmetries, and exact solvability.
Here are some key aspects of the relationship between computational algebraic geometry
and spin chain models:

1. Solving Bethe Equations: Spin chain models, including the Heisenberg XXX and
XXZ spin chain models, often involve solving a set of nonlinear equations called
Bethe equations. These equations arise from the Bethe ansatz method, which is
used to find the eigenstates of the system. Computational algebraic geometry pro-
vides powerful numerical and symbolic methods to solve these equations, often
involving techniques like Grobner basis computations and numerical algebraic

geometry. These methods enable the determination of the allowed momenta of
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the quasi-particles and the identification of the exact eigenstates of the spin chain
model.

. Symmetry Analysis: Spin chain models possess various symmetries, such as
translational symmetry, rotational symmetry, and permutation symmetry. Com-
putational algebraic geometry techniques, such as the theory of group represen-
tations and symbolic computations, can be employed to analyze and exploit these
symmetries. By studying the symmetry properties of the spin chain model using
algebraic methods, researchers can simplify the analysis and gain deeper insights
into the system’s behavior.

. Integrability Conditions: Integrable spin chain models have an extensive number
of conserved quantities, which are crucial for their exact solvability. Computa-
tional algebraic geometry provides tools to study the integrability conditions of
these models. By formulating the problem in the language of algebraic geome-
try, researchers can analyze the algebraic properties of the conserved quantities
and investigate the conditions under which they commute with the Hamiltonian.
This analysis contributes to understanding the underlying mathematical structure
of the integrable spin chain models.

. Phase Diagram Analysis: Computational algebraic geometry techniques are valu-
able in studying the phase diagrams of spin chain models. By analyzing the al-
gebraic equations that describe the model and their solutions, researchers can ex-
plore the different phases of the system, identify phase transitions, and determine
critical points. Numerical methods in algebraic geometry, such as numerical con-
tinuation and bifurcation analysis, aid in tracing the phase boundaries and char-
acterizing the critical behavior of the spin chain model.

. Entanglement and Correlation Analysis: Computational algebraic geometry also
facilitates the study of entanglement properties and correlation functions in spin
chain models. By using algebraic methods and symbolic computations, re-
searchers can calculate entanglement measures, such as entanglement entropy,

and analyze correlation functions to understand the quantum correlations and sta-
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tistical properties of the system.

In summary, computational algebraic geometry provides powerful tools and tech-
niques to analyze and solve spin chain models. It aids in solving Bethe equa-
tions, studying symmetry properties, analyzing integrability conditions, exploring
phase diagrams, and investigating entanglement and correlation properties. The
combination of computational algebraic geometry with spin chain models con-
tributes to a deeper understanding of these quantum systems and advances our

knowledge in the field of theoretical physics.
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Chapter 4 Algorithms to calculate Grobner basis

4.1 Multivariate polynomial division

To calculate and use Grobner basis firstly one need the multivariate division al-
gorithm, which is a generalization of univariate Euclidean algorithm (Algorithm 4.1).
The basic procedure is that: given a polynomial F and a list of k polynomials f;’s, if
LT(F) is divisible by some LT(f;), then remove LT(F) by subtracting a multiplier of

f;. Otherwise move LT(F) to the remainder r. The output will be

F=q1f1+"‘qkfk+r’ (411)

where r consists of monomials cannot be divided by any LT(f;). Let B = { f,... fi},

—B
and denote F' as the remainder r. Recall that the one-loop OPP integrand reduction

Algorithm 4.1 Multivariate division algorithm
1: Input: F, f, ... f}, >

2:q '=...:=q,=0,r:=0
3: while F # 0 do
4: reductionstatus =0
5 fori=1to k do
6 if LT(f;)| LT(F) then
7 . LT(F)
: 4% =497 o2,
8 F.=F—LT(F)f'
) LT(f)"!
9: reductionstatus =1
10: break
11: end if
12: end for
13: if reductionstatus = 0 then
14: r:=r+LT(F)
15: F :=F —-LT(F)
16: end if

17: end while
18: return q, ... q,,r

and the naive trial of two-loop integrand reduction are very similar to this algorithm.
Note that for a general list of polynomials, the algorithm has two drawbacks: (1)
the remainder r depends on the order of the list, { |, ... f,} Q) if F € (f] ... f,,), the

algorithm may not give a zero remainder . These made the previous two-loop integrand
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reduction unsuccessful. Grobner basis eliminates these problems.

Proposition 4.1 LetG = {g;,... g, } be a Grobner basis in F[z, ... z,] with the
monomial order >. Let r be the remainder of the division of F by G, from Algorithm
4.1.

1. r does not depend on the order of gy, ... g,,.

2. fFel={(g,...8,) thenr =0.

Proof If the division with different orders of g, ... g, provides two remainder
ry and ry. If r{ # r,, then r{ — r, contains monomials which are not divisible by any
LT(g;). Butr, —r, € I, this is a contradiction to the definition of Grobner basis.

If F € I,thenr € I. Again by the definition of Grobner basis, if » # 0, LT(r) is

divisible by some LT(g;). This is a contradiction to multivariate division algorithm. &

Then the question is: given anideal I = (f; ... f}) in F[z,, ... z,] and a monomial
order >, does the Grobner basis exist and how does one find it? This is answered by
Buchberger’s Algorithm, which was presented in 1970s and marked the beginning of

computational algebraic geometry.

4.2 Buchberger’s Algorithm

Recall that Euclidean algorithm computes the gcd of two polynomials hence the
Grobner basis is given. The key step is to cancel leading terms of two polynomials. That
inspires the concept of S-polynomial in multivariate cases.

Definition 4.1 Given a monomial order > in R = F[zy, ... z,,], the S-polynomial
of two polynomials f; and f; in R s,

LT(f;) LT(f;)
- £ 4.2.2)
ged (LT(f;),LT(f))""  ged (LT(f),LT(f;))

NSO

Note that the leading terms of the two terms on the r.h.s cancel.
Theorem 4.1 (Buchberger) Given a monomial order > in R = [F[z,...z,],
Grobner basis with respect to > exists and can be found by Buchberger’s Algorithm

(Algorithm 4.2).
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Proof See Cox, Little, O’Shea¥, [ |

Algorithm 4.2  Buchberger algorithm
1: Input: B = {f, ... f,} and a monomial order >

2: queue = all subsets of B with exactly two elements

3: while queue! = @ do

4: {f,g} :=head of queue

5 ri=5(/.2)

6: if r # 0 then

7: B:=Bur

8: queue << {{By,r},... {lastof B,r}}
9: end if
10: delete head of queue

11: end while
12: return B (Grobner basis)

The uniqueness of Grobner basis is given via reduced Grobner basis.
Definition4.2 For R = F[z,, ... z,] with a monomial order >, a reduced Grobner
basis is a Grobner basis G = {gy, ... g, } with respect to >, such that
1. Every LT(g;) has the coefficient 1,i =1,..., k.
2. Every monomial in g; is not divisible by LT(g;), if j # i.
Proposition 4.2 For R = F[z, ... z,] with a monomial order >, I is an ideal.
The reduced Grobner basis of I with respect to >, G = {gy, ... g, }, is unique up to the

order of the list {gy, ... g, }- It is independent of the choice of the generating set of 1.

Proof See Cox, Little, O’ Shea241Chapter 2 Nte that given a Grobner basis B =
{h; ... h,}, the reduced Grobner basis G can be obtained as follows,
1. For any h; € B, if LT(hj)l LT(h;), j # i, then remove h;. Repeat this process,
and finally we get the minimal basis G' C B.
2. Forevery f € G', divide f towards G’ — { f}. Then replace f by the remainder
of the division. Finally, normalize the resulting set such that every polynomial

has leading coefficient 1, and one can get the reduced Grobner basis G.

Note that Buchberger’s Algorithm reduces only one polynomial pair every time,
more recent algorithms attempt to

1. reduce many polynomial pairs at once
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2. identify the “unless” polynomial pairs a priori.

Here, Faugere’s F4 algorithm will be introduced as the representative of the rest (291

4.2.1 Faugere’s F4 algorithm

Faugere’s F4 algorithm is a powerful algorithm in the field of computational alge-
braic geometry, specifically in the area of polynomial system solving. It was developed
by Jean-Charles Faugere and provides an efficient method for computing Grobner bases,
which are fundamental objects in algebraic geometry and polynomial algebra.

The F4 algorithm utilizes the concept of ”F4 reduction,” which involves reducing a
given polynomial system to a smaller and simpler system while preserving its Grobner
basis. This reduction process exploits various algebraic properties and relations among
the polynomials in the system to eliminate unnecessary computations and reduce mem-
ory requirements.

The key idea behind the F4 algorithm is to construct a so-called ”’S-pair matrix”
that represents the reductions and relations between the polynomials. By carefully or-
ganizing and manipulating this matrix, the algorithm reduces the problem of computing
a Grobner basis to a series of linear algebra operations, such as matrix reduction and
Gaussian elimination.

Here is the basic idea of ”F4 reduction”.

Algorithm 4.3  Faugere’s F4 reduction
1: Input: P, a finite subset of selected critical pairs
2: G a finite subset of R[x]
3: F = (F )=y, q» Fy a finite subset of R[x]
4: F := Symbolic Process(P,;,G,[F)
5
6
7

. F := RREF(F)w.rt <
: F*:={f e FIHT(f) ¢ HT(F)}
. return (F*, F)

Here RREF and Symbolic Process algorithms are algorithms for Gauss reduc-
tion to row echelon form and some matrix construction process. One may find detailed
information in the reference*”’

And the F4 algorithm is as below:

Notice that the efficiency of the F4 algorithm largely depends on the selection strat-
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Algorithm 4.4  Faugere’s F4 algorithm
1: Input: F = {f, ... f,}

2:.G:=Q

3: P:=0@

4:d:=0

5: while F! = @ do

6: f = first(F)

7: F :=F\{f}

8: (G,P) :=Update(G, P, f)

9: end while

10: while P! = @ do

11: d . =d+1

12: P, = Select(P)

13: P =P\P,

14: (F,F,) := Reduction(P;,G,(F), 1)
15: for h € F do

16: (G,P) :=Update(G, P, h)
17: end for

18: end while
19: return G (Grobner basis)

egy and RREF function. One may need a lot of work to choose the right function for
the computation.

However, it’s important to note that while the F4 algorithm provides significant
advancements in Grobner basis computations, it is not a universally superior algorithm
for all scenarios. The choice of algorithm depends on the specific characteristics of the
problem at hand, and other algorithms, such as F5 or tailored variants, may be more

efficient in certain cases.

4.3 Current Implementations of the algorithms

There are already some implementations of Buchberger algorithm and F4 algo-
rithm in computer algebra systems.
Usually one can compute Grobner basis by programs, for example,
 in MatHEMATICA The embedded function GroebnerBasis computes Grobner basis
by Buchberger’s Algorithm. The relation between Grobner basis and the original
generating set is not given. Usually, Grobner basis computation in MATHEMATICA
is not very fast.
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in MapLE Maple computes Grobner basis by either Buchberger’s Algorithm or
highly efficient F4 algorithm.

SINGULAR is a powerful computer algebraic systemm] developed in Technische
Universitdt Kaiserslautern. SINGULAR uses Buchberger’s Algorithm to compute
Grobner basis

MacauLAY? is a sophisticated algebraic geometry program, which orients to re-
search mathematical problems in algebraic geometry. It contains Buchberger’s
Algorithm and experimental codes of F4 algorithm.

Fgb package [48]

. This is a highly efficient package of F4 and F5 algorithms by
Jean-Charles Faugére. It has both MapLE and C++ interfaces. Usually, it is
faster than the F4 implement in MapLE. Currently, coefficients of polynomials

are restricted to Q or Z/p, in this package.
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Chapter 5 Application of CAG methods in spin chain

model
5.1 Application I: counting the number of BAES’ solution

In this section, one is introduced to apply the method of Grobner basis to compute
the numbers Ny, Ny and N Lszl\}ys for given L and N. The notations are from 2.3.36.
The basic idea is that the number of solutions for a given set of polynomial equations is
the dimension of the corresponding quotient ring. Instead of solving equations, one can
construct the quotient rings and compute their dimensions.

For a given L and N, define the following polynomials.

— 7L : AL . .
Bj—(uj+1/2) Qu(uj—l)+(uj—l/2) O, (u; +1i), j=1,- N (5.1.1)
B =w @+ 1/4) - (u3, + 1/4) — 1 (5.1.2)

B =w@u; + 1/4) - (u3, + 1/4) — 1 (5.1.3)

where Q,,(v) is the Baxter polynomial defined by

N
0uw) = [ —up). (5.1.4)
k=1

To have pairwise distinct roots, one may define the polynomials

ij — _ ’
U —u;

i=1,-,N—-1;, j=i+1,---,N. (5.1.5)

This is a classical trick of getting distinct roots in algebraic geometry. For singular and

singular physical solutions, define the following polynomials

N
Si= G+ i) = 3ir2) [ g —u; = ) (5.1.6)
j=3
N
+ (g — i) N +3i2) [ Jag —u; + 0. k=3,-.N,
j=3

N N
S =[]y + i)™ + DM ] [ - ir)-.
k=3 k=3
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Using these polynomials, one can define the following ideals

INS=<B]a'“7BN7B9A]2"“’AN_],N>’ (51.7)
Ig = <S3, e SNsB,,A34’ ’AN—I,N>a

ISP =<837 o ’SN’B,’Sa A34’ ’AN—l,N>

where the subscribes denote ‘Non-Singular’, ‘Singular’ and ‘Singular Physical’. The

corresponding quotient rings are defined as

QNS =C[M1,"',MN]/IN5, (518)
QS = C[U3, Tt uN]/157

QSP = C[u:;, ey, MN]/ISP.

All the three quotient rings are finite dimensional linear spaces. The numbers N L.N>

sphys . . . . . .
N ; n and N LpNy are given in terms of the dimensions of the quotient rings as

N _ dim QNS + dim QS S _ dim QS sphys _ dim QSP
LN ™= NI (N =2)!" LN = (N =)V LN 7 (N =2)!
(5.1.9)

One may divide the dimensions by factorials to get rid of the permutation redundancy.
Any permutation of the set of Bethe roots is considered to be the same solution, yet they
correspond to different points in the affine variety. From the definitions of the ideals
(5.1.7), it is straightforward to compute the corresponding Grobner basis. Then one can
construct the standard basis for the quotient rings and the dimensions of the quotient
rings follows.

Note that BAE (for non-singular and singular solutions) is totally symmetric in
uy,...u,, i.e., the ideal for BAE is symmetric under the full permutation group of u;’s.
One can take advantage of this feature to speed up the Grobner basis computation. One
immediate choice is to apply the symmetric ideal Grobner algorithm, “symodstd.lib” in
SinguLar. However, this approach is still not fast enough for our propose. Instead, the
following trick is developed:

For a totally symmetric ideal I in variables uy, ... u,, add n auxiliary variables
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s, ... s, and n auxiliary equations to make a new ideal I,
sk— Y, Uy u, =0, k=1,..n. (5.1.10)
J1< ek

Therefore one may define s, as the k-th elementary polynomials in uy,...u,. Itis
found find that with auxiliary variables and equations, and a block order [uy, ... u,] >
[s,,...s1], the Grobner basis computation is much faster. Furthermore the resulting
Grobner basis for T is much shorter comparing with that for I. It’s believed that the
improvement comes from the fact that BAE is much simpler in terms of the symmetric
variables s, ... , s,. The solutions of I are in one-to-one correspondence to the solution
of I, so this method is sufficient.

As a very interesting byproduct, this trick provides a new representation of BAE:

The Grobner basis G(I), in the block order mentioned above, eliminates the original

variables uy, ... u, and gives a set of equations only in s, ..., s,,.
(G NK[sy,...s,1) =T N K[sy, ... 5,]. (5.1.11)

(On the left hand side of the equation, (...) means the ideal inside K[s, ... s,].) Usually
the symmetrized BAE in sy, ..., s, is simpler than the original one since the permutation

symmetry group .S, is removed.

5.1.1 Comparison of 2 algorithms

So the basic idea is to compute the Grobner basis of (5.1.7). Then, as is talked
above, one has 2 choices on the algorithm to compute it: Buchberger or F4? Here’s the
comparison of them in the problem mentioned above.

During the comparison, the implementations chosen are:

1. Buchberger algorithm: ”std” function implemented in SINGULAR, which returns
a standard basis.
2. F4 algorithm: Fgb package on MApLE, which is a direct implementation, returns
a reduced Grobner basis
Here the examples used are the ideals generated by variables {s,,...,s,} with re-

spect to the XXX spin chain of length 10 < L < 20 and magnons 5 < M <9, and one

37



Chapter 5 Application of CAG methods in spin chain model

computes the Grobner basis of them with the implementations above. Notice that for the
idea of efficiency, the finite field technique is introduced in the calculation of Grobner
basisOne calculates over Z/py, ..., Z/p,, where p; is prime. Then it is easy to calculate
the lift result in Q by Chinese Remainder Theorem and Farey sequences. One may use
package “modstd.lib” in SINGULAR to do this. It is also applied on the MAPLE process.

Here are the results:

Length or magnons 5 6 7 8 9
10 0.2 N/A N/A N/A N/A
11 N/A N/A N/A N/A N/A
12 0.3 0.6 N/A N/A N/A
13 0.3 0.7 N/A N/A N/A
14 0.7 1.2 N/A N/A N/A
15 1.1 2.7 9.9 N/A N/A
16 9.3 13.3 30.5 N/A N/A
17 107.1 297.6 403.7 904.1 N/A
18 1000.3 1300.2  3700.9 49914  6103.2
19 35479  8427.1 17853.2 218217 370904
20 12070.8 195879 26439.0 N/A N/A

Table 5.1 Result of Buchberger calculation (s)

Length or magnons 5 6 7 8 9 ‘
10 0.2 N/A N/A N/A N/A
11 0.2 N/A N/A N/A N/A
12 0.3 1.0 N/A N/A N/A
13 0.6 1.1 N/A N/A N/A
14 1.4 5.0 N/A N/A N/A
15 3.0 52 12.9 N/A N/A
16 15.1 237 33.9 N/A N/A
17 118.1 347.9 461.2 1193.1 N/A
18 1276.6 18922 79463 10892.0 21487.3
19 4303.1 27790.6 347512 N/A N/A
20 174502  N/A N/A N/A N/A

Table 5.2 Result of F4 calculation (s)
During the test, the CPU being used is Intel(R) Core(TM) i7-10750H CPU @
2.60GHz 2.59 GHz with 32GB RAM. Both programs are running with single core.
Here "N/A” for 19 < L < 20 reads that the results cannot be calculated within the
acceptable time. (Other "N/A” means that no such examples given)

One can easily find out that Buchberger algorithm is much better than the F4 al-

38



Chapter 5 Application of CAG methods in spin chain model

gorithm for the same Grobner basis calculation task since the time consumption is far

less. So we choose Buchberger algorithm for further test.

5.2 Application II: calculation of companion matrix in Loschmidt

Echo problem

The Loschmidt echo is a concept that arises in the study of quantum dynamics and
quantum information theory, including the dynamics of spin chain models. It provides
a measure of the sensitivity of a quantum system’s time evolution to perturbations or
changes in its initial state. In the context of spin chain models, the Loschmidt echo
quantifies how a small perturbation affects the time evolution of the system.

In a spin chain model, the Loschmidt echo is defined as the overlap between the
time-evolved state of the system under a perturbed Hamiltonian and the initial state of
the system. Mathematically, it can be expressed as:

Certainly! Here is the equation for the Loschmidt echo in LaTeX code:

L(t) = [(w (e e ol |y, (0))| (5.2.12)

where |y(0)) is the initial state of the system, H|, is the unperturbed Hamiltonian
governing the system’s time evolution, H, is the perturbed Hamiltonian, and ¢ is the
evolution time.

The Loschmidt echo provides information about the stability and robustness of the
quantum system. If the initial state is perturbed slightly, a large Loschmidt echo implies
that the system’s time evolution is highly sensitive to the perturbation. On the other
hand, a small Loschmidt echo indicates that the system’s evolution remains relatively
stable under the perturbation.

The Loschmidt echo has been widely studied in the context of spin chain models,
particularly in the investigation of quantum phase transitions, quantum chaos, and many-
body localization. It has been used to probe the effects of disorder, interactions, and

other perturbations on the dynamics of spin chains, shedding light on the emergence of
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long-range correlations, thermalization, and the transition from localized to delocalized
behavior.

Furthermore, the Loschmidt echo has connections to other concepts in quantum
information theory, such as quantum fidelity and quantum entanglement. It is related to
the decay of quantum correlations and the spreading of information in the system. As
such, the Loschmidt echo provides insights into the behavior of quantum systems and
their response to perturbations, contributing to our understanding of quantum dynamics
and information processing.

Given a spin chain with length L and N finite magnons and » magnons at infinity,

one can build such transfer matrix as

conjFacdes(N,n)overlapDW des(N, n)2eigenUdes(N, n)k
normGdes(L, N, n)

termAGdes(L, N,n, k) =
(5.2.13)
in which k as the time evolution parameter.

Here

N
conjFacdes(N,n) = H[(

i=1

uk)—0 Nin o y(k)+0  Nin
o—o+7  Gwoxrerd ] (5.2.14)

calculates the conjugation factor between (uy |DWy ) and (DWy |upy);

overlapDW des(N , n) gives the the overlap of the domain wall boundary state and
the descendant state with N finite magnons and » magnons at infinity.

normGdes(L, N, n) computes the Gaudin norm of the descendant states of length
L and N finite Bethe roots and » roots at infinity.

eigenUdes(N, n) computes the eigenvalue of U with N magnons. The eigenvalue
of the descendant state is the same as the primary state.

And after the calculation of the transfer matrix, to convert the Bethe roots to the
symmetric sums used in QQ — relations, one need to symmetrize all the expressions.

After that, one need to calculate the trace of the companion matrix of the sym-
metrized transfer matrix, which will be a univariate function to 6.

However it will be extremely hard if one directly computes the trace of the compan-

ion matrix with the parameter 6. Since the result will be a rational function of 8, one can
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do seeding to the parameter and gain a lot of results in integer form, during which time
the finite field technique can be applied. After this, one can perform Thiele’s method to
lift the result from the numerical results to get the rational function of 6.

One may want to see the time evolution via k. It suffices to calculate the results
w.r.t different integer value of k to see it.

Using the method mentioned in 3.2.3 261 one can compute the companion matrix
via computing Grobner basis. Then the following process will be similar to what has

been done in the previous section.
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Chapter 6 Massively Parallel Computation and
Computational Algebraic Geometry
6.1 Introduction to parallelization

6.1.1 Some facts about parallelization

Parallel computation in computational algebraic geometry refers to the use of mul-
tiple computing resources, such as processors or machines, to perform computations
simultaneously and expedite the solution of problems in algebraic geometry. It aims
to leverage the inherent parallelism in algorithms and computations to accelerate the
execution time and handle larger and more complex problems.

Parallel computation techniques have been employed in various aspects of compu-
tational algebraic geometry, including solving polynomial systems, computing Grobner
bases, analyzing algebraic varieties, and performing numerical algebraic geometry com-
putations. Here are some key aspects and benefits of parallel computation in this field:

1. Speedup and Scalability: Algebraic geometry problems often involve large-scale
computations that can be time-consuming and memory-intensive. By utilizing
parallel computation, the workload can be distributed across multiple processors
or machines, enabling significant speedup and enhanced scalability. This allows
researchers to tackle more challenging problems or analyze larger data sets within
a reasonable timeframe.

2. Algorithmic Parallelism: Many algorithms in computational algebraic geometry
exhibit inherent parallelism. For example, in polynomial system solving or Grob-
ner basis computations, independent operations can be executed in parallel, such
as polynomial multiplication, polynomial division, or elimination steps. Paral-
lelizing these computations reduces the overall execution time by dividing the
workload among multiple processors.

3. Divide and Conquer Strategies: Parallel computation techniques often employ di-

vide and conquer strategies to break down a problem into smaller subproblems
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that can be solved independently. For instance, in solving large polynomial sys-
tems, the problem can be divided into subsets of equations that can be solved in
parallel by different processors. The solutions from these subsets can then be
combined to obtain the complete solution.

4. Task Parallelism and Task Scheduling: In computational algebraic geometry, par-
allel computation can also be achieved through task parallelism, where different
tasks or operations are executed concurrently. Task scheduling techniques, such
as workload balancing and load distribution, play a crucial role in efficiently al-
locating tasks to available processors and optimizing the overall performance.

5. Parallel Libraries and Frameworks: Various parallel computing libraries and
frameworks, such as OpenMP, MPI, or distributed computing platforms, provide
tools and programming models to facilitate parallel computations in computa-
tional algebraic geometry. These libraries offer functionalities for parallel task
execution, data parallelism, communication among processors, and load balanc-
ing, simplifying the development and deployment of parallel algorithms.

6. Hybrid Approaches: In some cases, a combination of parallel computation with
other techniques, such as symbolic-numeric algorithms or approximation meth-
ods, can further enhance the efficiency and accuracy of computational algebraic
geometry computations. Parallelization can be combined with adaptive refine-
ment, iterative refinement, or probabilistic sampling techniques to obtain faster
and more accurate solutions.

Parallel computation in computational algebraic geometry has become increasingly
important as the size and complexity of problems continue to grow. By harnessing the
power of parallelism, researchers can tackle challenging computations more effectively,
accelerate the solution of problems, and explore new frontiers in algebraic geometry and

related areas of mathematics and science.

43



Chapter 6 Massively Parallel Computation and Computational Algebraic Geometry

6.1.2 Mathematical language of parallelization: Petri net

In parallel computation, Petri nets provide a mathematical framework for modeling
and analyzing concurrent and distributed systems. They offer a formalism that captures
the interactions and dependencies among different computational entities, enabling the
study of system behavior, synchronization, and performance.

Mathematically, a Petri net can be defined as a tuple (P, T, F, W, M), where:

* P is a finite set of places representing the state or condition of the system.
» T is a finite set of transitions representing events or actions that can occur in the

system.

F C (PXT)U(TtimesP) is a set of directed arcs connecting places and transitions.

W : F — N is a weight function that assigns a non-negative integer weight to
each arc, representing the number of tokens or resources required or produced by

the arc.

M, : P — Nis the initial marking, which specifies the initial distribution of
tokens in the places.
The state of the Petri net at any given moment is represented by a marking M|, :
P — N, which indicates the number of tokens in each place. A marking M is a valid
state if it satisfies the following conditions:

1. For each place p € P, M(p) > 0. 2. For each transition ¢t € T', the number of
tokens in its input places is greater than or equal to the number of tokens required by
the transition.

The behavior of the Petri net is governed by the firing rule. A transition ¢ can fire
and change the state of the system if the marking satisfies the firing condition: for each
input place p, the number of tokens in p is greater than or equal to the weight W (p, ?).
When ¢ fires, it consumes tokens from its input places and produces tokens in its output

places, according to the weights specified by the function W'.
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Here is an example of an open Petri net P from a set X to aset Y

X Y
RO
2| =S

a0

The yellow circles are places and the blue rectangle is a transition. The bold arrows from
places to transitions and from transitions to places complete the structure of a Petri net.
There are also arbitrary functions from X and Y into the set of places. These indicate
points at which tokens could flow in or out, making our Petri net ‘open’. We write this
open Petrinetas P: X » Y for short.

The firing of transitions can occur in parallel, reflecting the concurrent nature of
the system. Multiple transitions that satisfy the firing condition can fire simultaneously,
leading to different possible next states of the system. The choice of which transitions
to fire depends on the specific scheduling policy or strategy employed in the parallel
computation.

Through the analysis of Petri nets, various properties of parallel systems can be
studied, such as reachability, liveness, deadlock detection, and performance analysis.
Reachability analysis examines whether a particular marking can be reached from the
initial marking, while liveness analysis investigates the existence of possible firing se-
quences that can lead to certain states. Deadlock detection focuses on identifying states
where no transitions can fire, resulting in a system that cannot progress further. Per-
formance analysis deals with evaluating system throughput, response time, or resource
utilization based on the dynamics of the Petri net.

By providing a mathematical framework for modeling and analyzing parallel com-
putation, Petri nets facilitate the understanding, design, and optimization of concurrent
and distributed systems. They allow for formal reasoning about system behavior and
properties, aiding in the development of efficient and reliable parallel algorithms and
architectures.

In this project, the high efficiency Grobner basis computation is realized by con-

structing a parallel framework via SINGULAR/GPI-Space with self-implemented Buch-
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berger algorithm.

6.1.3 SiNnGcuLAR/GPI-Spacke framework

GPI-Spack, which stands for Global-View Parallel Interface Space, is a workflow
management system designed for high-performance numerical parallel computing by
the Competence Center High Performance Computing of Fraunhofer ITWM. It pro-
vides a programming model and a set of tools that simplify the development of parallel
applications.

The basic concept behind GPI-Spack is to provide a global view of the parallel
system’s data space. This means that instead of explicitly managing the distribution of
data across different processes or nodes, users can work with a unified view of the entire
data space, regardless of where the data is physically located. This abstraction hides the
complexities of parallelism and enables programmers to focus on their algorithms and
computations.

Here are the key components and concepts of the GPI-Spack:

* Data Spaces: In GPI-Spack, data is organized into data spaces. A data space
represents a collection of data elements that are distributed across the parallel
system. Each data element is associated with a unique global address, allowing
processes to access and manipulate the data seamlessly.

* Data Access: GPI-Spack provides functions and operations to access and ma-
nipulate data in the data spaces. Users can read and modify data elements using
their global addresses, without needing to be aware of the underlying distribution
or communication details. This allows for transparent access to distributed data,
making it easier to develop parallel algorithms.

e Communication: GPI-Space abstracts away the communication between pro-
cesses. It automatically manages the movement of data between processes when
necessary, based on the access patterns and dependencies of the application. This
communication is performed efficiently using low-level communication libraries

or protocols, such as MPI (Message Passing Interface).
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 Synchronization: GPI-SpacE provides synchronization mechanisms to coordinate
the execution of parallel processes. Users can specify synchronization points in
their code to ensure that processes wait for specific conditions or data dependen-
cies before proceeding. This helps to maintain the correctness and consistency of
the parallel execution.

* Load Balancing: GPI-Spack incorporates load balancing techniques to distribute
the computational workload evenly across the available processes. It dynamically
monitors the workload and adjusts the distribution of tasks to optimize perfor-
mance and resource utilization. Load balancing inGPI-SpacE helps to minimize
idle time and maximize the efficiency of the parallel application.

Here is the basic workflow of GPI-SpacE

GPI-Space
i Agent
User Application Workflow [ . ]
—_—
Gl——s & +——{m)-- 1 T .
= | ( ‘Scheduler ]
] |
I IO | I
& ! RIFD ! ! RIFD
% | [cPu core] [cPu core] [cPu core] [cPU Core]; ________ ! [cPu core) [cPu core (cPu Gore] (cPU Care L !
Node Node

Figure 6.1.1 principle of GPI-Space

GPI-Space supports a wide range of parallel architectures, including shared-
memory systems, distributed-memory systems, and hybrid systems. It offers a uniform
programming interface that hides the low-level details of the underlying hardware and
communication protocols, making it easier to write portable parallel code.

Overall, GPI-Spack simplifies the development of parallel applications by provid-
ing a global view of the data space, abstracting communication and synchronization, and
incorporating load balancing capabilities. It allows users to focus on their algorithms
and computations while the framework handles the complexities of parallelism, making
it an effective tool for high-performance scientific computing and parallel applications.

And the basic idea of SINGULAR/GPI-Spack framework is to combine Singular with
GPI-Srace to create a way of performing massively parallel computations in computer

algebra. Our approach is based on the idea of separating computation and coordina-
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tion. While SINGULAR is used as the computational backend, the coordination is done
by GPI-Space. GPI-Space uses the language of Petri nets to model algorithms in the co-
ordination layer. The SINGULAR/GPI-SpacE framework can be used on anything ranging
from a personal computer and compute servers to ultrascale machines. In applications,
it scales efficiently up to thousands of cores on HPC clusters. Applications arise, so far,
from algebraic geometry (certifying smoothness, resolution of singularities), tropical
geometry (computing of tropicalizations with finite symmetries), geometric invariant
theory (computing GIT-fans with finite symmetries), high energy physics (computing
integration-by-parts identities for Feynman integrals), and condensed matter physics.
While relying on GPI-Spack allows us to apply state-of-the-art parallelization infras-
tructure when using Singular, our close collaboration has, in turn, also lead to intro-
ducing new programming constructs in GPI-Spack, and to developing an open source
version of GPI-Space. An Open Source Version of GPI-Spack has been released by
ITWM in Sept. 2020 (this software is actively being tested on CentOS Linux (Versions
6, 7, 8) and Ubuntu (Versions 18.04 LTS, 20.04 LTS), but various other distributions
will work as well). A first end user version of the SINGULAR/GPI-Space Framework has

been released in Dec. 2020, one can find it on the GitHuB.

6.2 Massively parallelization computation of Grébner basis

6.2.1 Algorithm in Petri nets

The parts that need to be parallelized during the calculation is that:
* calculate the s-polynomials of the s-pairs;
* calculate the normal forms of the s-polynomials.
* judge whether the normal forms is O or not.
The input will be a set of polynomials { f{, ..., f,,}, after change the index set into or-
dered pairs, one may run the Buchberger computation. The parallelization process will
be finished with GPI-Spack.

Every time for the iteration, there will be 2 transitions to decide whether to add the
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corresponding normal forms into the input basis, with adding to m. If it’s nonzero, one
extends m.

After the iteration, the system outputs the set m, which is the reduced Grobner basis

The Petri net of the algorithm is as follows:

ifr=0
kill
parallel

generates [Compute spolys compute NF r
s-pairs parallel parallel

if r not 0
parallel

v

extend: take [€—— modified ~ |g—— (corre
k=k+1 in s-pair >

union
%&enend basis set

ordering the s-
pairs

change into
matrices

Figure 6.2.2 Petri net of parallel Buchberger algorithm

6.2.2 The structure of the program

The program consists of 3 major parts.

* Framework for Parallelization. See the Petri net above. Each transition is written
in xpPNET language to define the input and output ports of the workflow. Using
Eureka method, it also defines when the computation terminates.

* Functions for calling. To realize the file flow in the framework part, one will need
to use the .ssi file format in SINGULAR to improve the efficiency of writing and
reading from hard drive. Such control structure can be realized by calling Sin-
GULAR’s C++ package libSingular. Also, one don’t use the real file in the I/O
port of the framework, but the file names between the tokens. So there will be a
random file name generator. And the most important part, the self-implemented
Buchberger algorithm via C++ and SINGULAR, which is a bit faster than the im-
plementation in SINGULAR as ”std”.

* The interface file. It is written in Python, which is used to call the function in the

second part. Change this file, and the parallelization will be changed.
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This program has already been published on the GitHus repo, one can download
it and give a try.

https://github.com/singular-gpispace/buchberger

6.2.3 Tests for Application |

In the previous chapter, the application of Grobner basis computation to the com-
pleteness of BAEs is mentioned. There are some results cannot be calculated directly
with SINGULAR Buchberger computation. Here it is tried with the parallel Buchberger
algorithm implemented with SINGULAR/GPI-SpacE framework.

The test is taken over the same machine as above. The CPU being used is Intel(R)
Core(TM) i7-10750H CPU @ 2.60GHz 2.59 GHz with 32GB RAM. The computation
is running on 4 cores parallelization.

Here are the time results of computing the Grobner basis for ideals generated by
variables {s,...,s,} with respect to the XXX spin chain of length 18 < L < 20 and

magnons 7 < M <10

’ Length or magnons 7 8 9 10
18 617.1 1399.3 2001.1 3917.6
19 1427.1 17972 31029 52214
20 32154 5121.7 6698.3 81894

Table 6.1 Result of parallel Buchberger calculation: Grobner basis (s)

One can see that, for comparison, the time results of length 18 < L < 20 and
magnons 7 < M < 9 has been shortened by 7 — 8 times. And the example of length

L =20, M = 10 can be computed within a reasonable time.

6.2.4 Tests for Application Il

Similarly, one can run the second application of this program. The test runs over
calculated intermediate results by using MATHEMATICA. The symmetrization process is
also performed with MATHEMATICA.

Using 41 CPUs and 144GB RAM on the cluster, the calculation of trace of com-

panion matrices is performed as below. Here the time parameter k is taken to 10, with
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the length 6 < L < 12 and magnons 0 < M < 4. The whole computation process
including rational function simplification, trace companion matrix computation over fi-
nite fields and lift back to Q and parallel fitting of the parameter . The seeding process
takes 20000 seeds in integer values for 6.

Here are the time results for the whole process. The pair (M, m) is the pair of finite

magnons and infinite magnons.

Length or magnons ‘ 0,00 (L,I) 20 (©02) (22 3,1 (1,3) 0,4) (4,0) ‘

6 00 00 3.4 3.7 N/A N/A N/A N/A N/A

8 0.0 1.3 9.9 10.1 67.4 4337 4172 2318 2157
10 0.0 101 299.1 2784 13002 1973.1 19374 719.8 7624
12 0.0 378 7715 7236 17014 2619.0 2903.1 20034 1998.9

Table 6.2 Result of parallel Buchberger calculation: companion matrix (s)

Here ”N/A” means the example does not exist.

One can see the complete results of length 6 < L < 12 and magnons 0 < M <4
with k£ = 10 can be calculated within reasonable time. Notice that previously the results
of L = 12, (M,m) = (3,1) and (1, 3) cannot be calculated directly with SINGULAR

within acceptable time limit.
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Chapter 7 Summary and Outlook

7.1  Summary

In terms of research direction, this project mainly focuses on topics related to quan-
tum integrable systems. In recent years, quantum integrable system models have played
an important role in various areas of mathematics and physics, particularly in reveal-
ing the characteristics and critical behavior of highly nonlinear and strongly correlated
physical systems far from the perturbative regime. The precise solutions of integrable
models are often required for such research, but the process can be challenging. Explor-
ing and developing efficient methods for solving the relevant equations is a key issue in
this field.

In terms of research objects, this project focuses on the application of computa-
tional algebraic geometry methods in integrable spin chain models. Computational al-
gebraic geometry methods, which have evolved from the study of algebraic equation
solutions, have become mature and efficient mathematical tools over the years. In the
study of integrable spin chains, the most important problem is the precise solution of the
Bethe Ansatz equations (algebraic equations). The compatibility between the two makes
the application of computational algebraic geometry methods in solving integrable spin
chains a promising research direction, and remarkable achievements have already been
made by research groups both domestically and internationally. In this process, solving
the corresponding Grobner basis is the most crucial step. Improving the methods for
solving Grobner basis is a key aspect of this research.

The research process of this project mainly focuses on the selection and improve-
ment of methods for solving Grobner basis . After extensive testing and comparison,
one method, namely the Buchberger algorithm, was chosen from the two main meth-
ods. And it had been re-implemented by hand in C++ and SiNGULAR language. The
SiNGULAR/GPI-SpacE framework was introduced to enhance parallel computing, result-
ing in improved computational efficiency.

The resulting program, namely “paraBuchberger”, is applied to 2 certain problems:
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counting solutions of BAEs in XXX spin chain model and finding the sum of solutions
for Loschmidt problem in XXZ spin chain model. And both have been proved to be
efficient to some degree. Some results that cannot be computed previously is now solved
with the new method.

However, due to time and computational resource limitations, this research project
was unable to test integrable system models on a larger scale, and the testing process was
also simplified. For example, the testing of algorithm selection used existing algorithm
implementations, which may not be as efficient as developing one’s own. The final
comparative testing was only conducted on a few representative calculations due to time
constraints, and there were some limitations in controlling variables. These aspects can
be further improved.

In conclusion, the results of this project have achieved the expected outcomes to
some extent. The algorithmic roadmap was designed and followed according to the
planned timeline. The program itself was developed and subjected to reliability testing.
A series of programming errors were identified and fixed through compilation testing.
Finally, by computing a few finite-scale instances, the proposed method in this project

was compared with traditional methods, demonstrating its superiority.

7.2 QOutlook

From the final run test results, it can be seen that the proposed parallel Buchberger
method in this research significantly improves the computational efficiency of Grobner
bases. This has implications for several fields:

1. In the context of the studied integrable spin chain computations, this method can
be attempted for solving larger-scale integrable spin chain Bethe Ansatz Equation
(BAE) problems, providing a clearer understanding of spin chain models.

2. In high-energy physics, it is possible to apply computational algebraic geometry
methods, such as computing Grobner bases, to address reduction problems in
Feynman integrals. By identifying the corresponding syzygy equations through

the module associated with the reduction, one can use the module intersection
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method to search for partial integration relations and thereby reduce integrals. In
this process, the computation of Grobner bases can also benefit from the parallel
method mentioned in this study to enhance computational efficiency.

3. Basic mathematical problems also involve the calculation of Grobner bases on
modules, particularly in finite fields, as well as the verification of Grobner bases’
correctness. This is helpful in areas such as combinatorics, quantum groups, al-
gebraic geometry, and complex geometry.

And so on.
Therefore, the proposed approach in this research still holds untapped potential,
awaiting further exploration and implementation in physics, mathematics, and other

fields.
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